

Energy Efficiency Enhancement through Technological Innovations in Chinese Taipei

March 15, 2023

The roadmap of 10-year technology development

				T	RL:1-5 TRL:6	5-8 TRL:9-11
No.	Goal	Technical Description	Future Development	2025-2027	2028-2030	2030-2034
1	Heat Pump	12%~30%Energy savings. Provide optimum cooling performance and mobility comfort.	Robotic Personal Comfort Device			
2		The traditional VHP heating COP reaches 1.4~1.6.	Alternative Gas-Fired Heat Pump Technologies			
3		COP>1, the unit energy saving rate is 40%.	Commercial Absorption Heat Pump Water Heater			
4	- Refringent	Equipment efficiency (COP) keep stable after replacing the refrigerant.	Air conditioner compressor with natural refrigerant			
5		Refrigerant without GWP or ODP, non- toxic and non-flammable	Chiller with Water Refrigerant		_	
6	Heat Exchanger & Component	Improve 125% volumetric heat transfer rate. Increase 20~30% heat transfer efficiency. Reduce 20% weight.	Novel, Polymer-Based, Air-Cooled Heat Exchangers; Additive Manufacturing for Heat Exchangers			
7		The unit energy saving rate is 10%.	Integration of Piezoelectric Sensor-Actuators into Heat Exchanger Headers to Alleviate Flow Maldistribution in Real Time			
8		Without additional post-casting heat treatment for Aluminum cerium alloy. Reduce 30%~60% manufacturing costs.	Cast Heat Exchanger Using the Novel Al-Ce Alloy			

The roadmap of 10-year technology development

TRL:1-5 TRL:6-8 TRL:9-11

No.	Goal	Technical Description	Future Development	2025-2027	2028-2030	2030-2034
9	Heat Exchanger & Component (Cont.)	Improve heat transfer efficiency UA of heat exchanger up to 400% and mechanical strength.	Low-Cost, High-Performance Polymer Composite Heat Exchangers Produced by Additive Manufacturing			
10		Reduce refrigerant leakage. Improve equipment operation efficiency and reliability. Reduce equipment production costs.	Adhesive Bonding of Aluminum and Copper in HVAC&R Applications			
11		The unit energy saving rate is 40%. Reduce 35% of refrigerant filling volume.	Novel Compact Flooded Evaporators for Commercial Sector Refrigeration			
12		Improve air side heat transfer coefficient by 4 times.	Enhanced Air-Cooled Heat Exchanger			
13	Air Conditioner Components (Motor, Compressor)	Efficiency keep stable after replacing rare earth (>IE4)	High-efficient motor without rare-earth magnet for HVAC application			
14		36% energy saving by switching from isentropic to isothermal compression.	Oil-Less Compressor/Rapid-Cast, High- Speed Centrifugal Compressor Impeller			
15	Cooling for Heat Driven	The membrane air conditioning system can save energy by 54-89%, and the SEER can be greater than 30.	Membrane Cooling System			

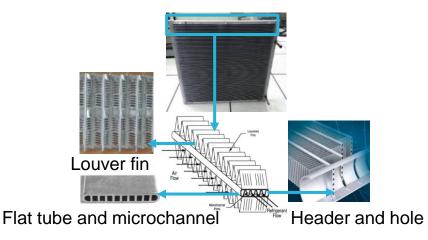
The roadmap of 10-year technology development

TRL:1-5

TRL:6-8 TRL:9-11

No.	Goal	Technical Description	Future Development	2025-2027	2028-2030	2030-2034
16	Other Device	The unit energy saving rate is 10%.	Wearable Devices for Personal Comfort			
17	Air Supply Device	The unit energy saving rate is 40%. Reduce 35% of refrigerant filling volume.	Electroactive Smart Air-Conditioner VEnt Registers (eSAVER)			
18	Prospective	The unit energy saving rate is 25%.	Electrocaloric Cooling System			
19	Research Magnetic	The unit energy saving rate is 40%.	Thermoelastic Cooling System			
20	cooling materials	The COP can reach 1.4 under refrigeration.	Thermoacoustic Cooling System			
21	Thermoelectric materials	About 12-40% energy saving effect in hot and humid areas.	Liquid Desiccant Cooling System		_	
21	Adsorption	Increase 3-5 times of the current vapor compression dehumidifier (required	Mechanical Dehumidification Using			
22	materials	electricity is 1/5).	High-Frequency Ultrasonic Vibration			

Technical innovation

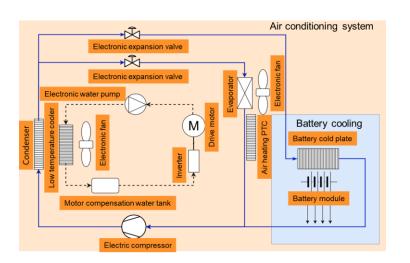

Microchannel heat exchanger (MCHX)

© Core technical advantages

- The unique and practical MCHX design software tool in Chinese Taipei: With complete refrigerant database and the calculation capacity error within 5%.
- **Key technologies**: Combined low GWP refrigerant and MCHX commercial technologies used for VRF, 5G/6G data centers, electric vehicles applications, the system weight and volume can be reduced by 10% and 20%, meanwhile, the efficiency will increase by 10%.

Applications & Key products

MCHX and high static pressure fan


Max. static pressure 80 Pa

Electric-vehicles Thermal Management System

Core Technical Advantages

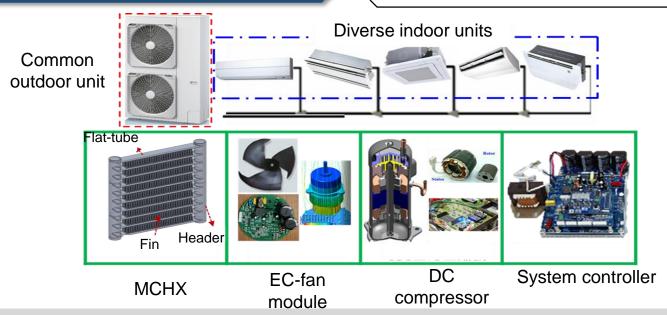
- Key component localization production: Horizontal-type inverter-fed scroll compressor module,
 Micro-channel heat exchangers (MCHXs), and Electronic commutation (EC) fan modules.
- Intelligent thermal management system: Integrate battery cooling, motor cooling, controller cooling, cabin air conditioning and other systems, saving 20% of electricity.

Applications & Key Products

Air conditioning and cooling modules for electric vehicles

Key components and modules Inte

Intelligent control system


Variable Refrigerant Flow (VRF) System

Core Technical Advantages

- World's first R32 common condensing unit: Used for mini VRF and VRF series, the Cooling Seasonal Performance Factor(CSPF) is 30% better than Class I energy efficiency, the noise reduced 10dB
- **Key components localization:** Micro-channel heat exchanger, Anti-high static pressure EC fan, DC inverter-fed compressor, system controller, open source of VRF operating system.

Applications & Key Products

Common outdoor unit & open operating system

Organic Rankine Cycle (ORC) power generator

© Core technical advantages

• Organic Rankine Cycle system: The total solution engineering system uses low boiling point organic working fluid to convert medium and low temperature heat energy into electricity. The heat source temperature is 85°C~130°C (unit inlet), the generator power output is 10KW~>300kW, and the unit system efficiency is ≥ 8% (the higher the temperature, the higher the efficiency).

Applications & Key Services

It has been applied in more than ten different industrial fields such as chemical, pulp and paper, steel and geothermal, etc. Its investment recovery period is generally $\leq 4\sim5$ years

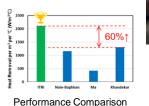
Industry	Heat source	Unit capacity	Payback period
Chemical	82°C/200TPH Condensed water	200kWe	~ 3.6 years
Pulp and Paper	110°C/60TPH Hot water	125kWe	~ 3.5 years
Waste Disposing	165°C/4TPH Steam	255kWe	~ 3.8 years

Electronic Device & Data Center Cooling System

© Core technical advantages

- **Heat Pipe Heat Exchangers(HPHX)**: Unique design to activate pulsation two-phase flow in three-dimensional operation. Heat dissipation capability is 60% higher than other HPHXs.
- Immersion Cooling for Servers: Total solution combining power, cooling, monitoring, maintenance, and server all-in-one. PUE<1.1, 40% less than traditional data center and 10% less than commercial immersion cooling facility. The best choice for edge computing data centers.

Applications & Key products


High Performance HPHX Technology and Applications

Heat Removal from Laser Projectors

High Performance HPHX

Heat Pump Dryers

10U Immersion Cooling Edge Computing Data Center

	Traditional A/C Cooling	Immersion Cooling Traditional Type	ITRI Innovative Immersion Cooling
PUE@30°C	1.6-2.0	1.2	<1.1
Energy Saving(%)		~30%	~40%
Water Loop	With	With	Without
Heat Transfer	Active	Active	Partially Passive(HP)
Heat Removal (kW/m³)	10	15	16.7
Down Size	-	~30%	40% less than traditional data center and 10% less than commercially available one
Floor Area(m²) (for 50kW IDC)	10	7.3	5
Setup Time	3-6 months	1~3 months	<4 hours

Thank You