

Efficient Appliances for People & the Planet

CLASP Report on World's Best MEPS

Lei Zeng March 15, 2023

CLASP improves the energy and environmental performance of the appliances & equipment we use every day, accelerating our transition to a more sustainable world.

New report and interactive web page

- <u>https://www.clasp.ngo/tools/worlds-best-meps/</u>
- Or scan here:

Scope of Analysis

What efficiency levels have been achieved today

Brazil

- China
- Canada
 European Union

Indonesia

India

- JapanSouth Africa
- United KingdomUnited States

- Global goals and benchmarks
 - United for Efficiency (U4E Model Regulations)
 - COP26 Call to Action on Doubling Appliance Efficiency
 - Electrification
 - Net-zero Energy

Learn and drive ambition around the world

Conducting a Fair Comparison

- Not all economies can reach the same levels
 - Climate
 - Product availability
 - Economics
- Also, sometimes products are not completely comparable

Refrigerators

Product

400 L frost-free refrigerator-freezer

- 300 L fresh-food compartment
- 100 L top-mounted freezer
 compartment (3 star/-18 °C)

Metric

Annual energy consumption (kWh)

Refrigerators

MEPS evaluated at 32 °C were normalized to 24 °C

- Lower heat load
- Higher COP

Martien Janssen, "Impact of the new IEC 62552-1,2,3:2015 global standard to cold appliance energy consumption rating", Report number 14127CE40/V2, 29 May 2015, Appendix A https://ecodesign-fridges.eu/sites/ecodesign-fridges.eu/files/CECED%20Report 15127 CE40 V2 ImpactGlobalStandard.pdf

Refrigerators

Recommendations

- At a minimum, all economies should aim for MEPS at 279 kWh/year.
- Next, match U4E's intermediate target of 223 kWh/year.

Residential Water Heating

Product

Gas storage & instantaneous Electric storage

Did not evaluate solar water heating

- China: 7–65% stock share
- India: 13% market share
- South Africa: 6% stock share

Focused on major technology shifts: condensing (≥86%) and heat pumps (>100%)

Residential Water Heating

Residential Space Heating

Product

Product types with significant potential for efficiency/CO₂ reduction:

- Gas furnaces & boilers
- Electric resistance
- One-way air conditioners

Market segment (1): Cold region, detached house Market segment (2): Cold region, apartment house

Heat Pump & Thermal Storage Technology Center of Japan, "FY2020 Survey on Heat Pump Diffusion Prospects," August 2020. Note y-axis should be labeled "space heaters".

Residential Space Heating

Residential Space Heating

Recommendation

- Require condensing efficiencies and heat pumps
- Replace one-way air conditioners with heat pumps

Energy and Mines Ministers' Conference. <u>Paving the Road to 2030 and</u> <u>Beyond: Market transformation road maps for</u> <u>energy efficient equipment in the building</u> <u>sector</u>, 2018.

Figure 5. Aspirational goals to 2035 for space heating in Canada

Short term: By 2025,

- All fuel-burning technologies for primary space heating for sale in Canada meet an energy performance of at least 90% (condensing technology).
- All air-source heat pumps for sale in Canada meet a SCOP greater than 2.5,¹⁰ at least 30% better performance than today.

Medium term: By 2030,

- A residential natural gas heat pump with a SCOP greater than 1.2 can be manufactured and installed cost-effectively.¹¹
- A residential cold climate air-source heat pump with a SCOP greater than 2.75 can be manufactured and installed cost-effectively.¹²
- The deployment of heating systems using renewable technologies and renewable resources is supported.

Long term: By 2035, all space heating technologies for sale in Canada meet an energy performance of more than 100%.

Residential Lighting

Product Indoor, non-directional general service lamps

Metric

Minimum luminous efficacy (lm/W)

	Column 1	Column 2	Column 3	
Item	Energy-using Product	Energy Efficiency Standard	Period of Manufacture	
1	General service lamps that have a luminous flux of < 750 lm	Nominal power ≤ 29 W Life ≥ 1 000 hours Colour rendering index ≥ 80	On or after December 31, 2014	
2	General service lamps that have a luminous flux of \ge 750 lm and < 1 050 lm	Nominal power ≤ 43 W Life ≥ 1 000 hours Colour rendering index ≥ 80	On or after December 31, 2014	
3	General service lamps that have a luminous flux of \ge 1 050 lm and < 1 490 lm	Nominal power $\leq 53 \text{ W}$ Life $\geq 1 000 \text{ hours}$ Colour rendering index ≥ 80	On or after January 1, 2014	
4	General service lamps that have a luminous flux of ≥ 1 490 lm	Nominal power \leq 72 W Life \geq 1 000 hours Colour rendering index \geq 80	On or after January 1, 2014	

Government of Canada, "Energy Efficiency Regulations, 2016 (SOR/2016-311)," 2016, <u>https://laws-lois.justice.gc.ca/eng/regulations/SOR-2016-311/page-22.html#docCont</u>.

Residential Lighting

Residential Lighting

Residential Lighting

Recommendations

- All economies should adopt technology-neutral MEPS at 90 Im/W or greater.
- Economies already meeting this requirement should strive for more stringent MEPS of at least 120 lm/W.

Electric Motors

Product

3-phase Induction Motor <1000 V

Metric

Efficiency class under IEC 60034-30-1 & additional MEPS for motor driven applications

Minimum Energy Performance Requirements Electric Motors

EU: Tier1 per 15/7/2021: IE3 (0.75-1'000 kW), IE2 (0.12-0.75 kW), Tier2 per 1/7/2023: same as Tier 1 + IE4 (75-200 kW). Note: UK and CH have applied EU regulation in full.

IEC and ISO Standards and MEPS motors, converters, pumps, fans, compressors

Component Scope		Testing Standard Efficiency Classification Standard					Performance Requirement			
				efficiency metric	P	EΡ	Mandatory MEPS "			
Motor	3-phase induction motors (Low Voltage < 1'000 V)	IEC 60034-2-1 IEC 60034-2-3	IEC 60034-30-1 IEC 60034-30-2	IE	x		30+ countries/regions, see			
Converter	Variable Frequency Converter (VFC, VSD)	IEC 61800-9-2	IEC 61800-9-2	IE	x		EU			
Pump	Rotodynamic water pump	ISO 9906	- EU: EN 16480 US: DOE x CN: GB-x	- MEI PEI EI	x x	x	EU USA China			
Fans	Industrial	ISO 5801	ISO 12759-1 ISO 12759-2 ISO 12759-3 ISO 12759-4 ISO 12759-5 ISO 12759-6 (CD)	standard losses FEG FMEG JFEMG FEI	x	x x	- China EU US			
Air compressor	Compressor package	ISO 1217	ISO 1217 ISO 1217, Am.1:2016	Compressor efficiency grade Isentropic efficiency		x x	China USA			

01 05 2022

I P = product, EP = extended product (motor, control, transmission, pump/fan/compressor) II MEPS = Minimum Energy Performance Standard (set as requirement by regulators)

Source: IEA 4E EMSA, 2022

Appliance Policy Event: Motor Systems, 7 June 2022

Electric Motors

Electric Motors

Recommendations

- All economies should require a minimum efficiency class of IE3, while leading economies should strive for IE4 or IE5.
- Economies should also consider adopting requirements for additional components such as variable speed drives or for industrial pumps, fans, and air compressors.

Air Conditioners

Product 7 kW split-system unit

Metric Seasonal energy efficiency metric (ISO CSPF Wh/Wh)

Table B1

Interregional conversion relationships of seasonal energy efficiency for split room ACs, based on the data of two FSD and four VSD models (Group A).

Y	Х	$Y = d + \frac{a-d}{a-d}$	8						Alternative (linear, logarithm, or exponential)
		$(1+(\frac{X}{c})^b)$							
		a	b	с	d	R ²	p-value	Std. error	
ISO CSPF	ISEER	1.847	3.269	5.473	12.156	0.999	0.002	0.134	$7.726 \cdot \ln(X) - 5.318 \ (R^2 = 0.996)$
	China APF	3.105	7.216	4.659	10.287	0.994	0.011	0.330	$1.798 \cdot X - 2.027 \ (R^2 = 0.970)$
	Japan APF	3.348	5.036	7.349	14.855	1.000	0.001	0.087	$1.735 \cdot \exp((0.220 \cdot X))$ (R ² = 0.976)
	Korea CSPF	3.244	4.490	7.179	11.221	0.999	0.002	0.132	$0.970 \cdot X + 0.048 \ (R^2 = 0.991)$
	U.S. SEER	1.728	1.741	15.127	26.177	1.000	0.000	0.047	$0.962 \cdot X + 0.087 (R^2 = 0.999)$
	EU SEER	-0.600	1.006	521,765	617,390	1.000	0.001	0.079	$1.113 \cdot X - 0.639 (R^2 = 0.999)$
	ISO CSPF	2.465	1.765	15,334	2,215,983	0.996	0.007	0.192	$2.085 \cdot \exp((0.137 \cdot X))$ (R ² = 0.996)
	China APF	2.804	4.813	5.305	9.716	0.996	0.008	0.207	$1.323 \cdot X - 0.883 (R^2 = 0.986)$
ISEED	Japan APF	3.150	3.696	248	1,790,672	0.997	0.006	0.172	$1.807 \cdot \exp((0.184 \cdot X)c) (R^2 = 0.956)$
IJLEN	Korea CSPF	2.982	3.200	9.533	12.086	0.997	0.005	0.166	$2.094 \cdot \exp((0.133 \cdot X))$ (R ² = 0.992)
	U.S. SEER	2.574	1.826	11,731	2,126,699	0.998	0.005	0.159	$2.108 \cdot \exp((0.132 \cdot X))$ (R ² = 0.997)
	EU SEER	2.322	1.823	10,862	2,158,012	0.994	0.011	0.239	$1.910 \cdot \exp((0.152 \cdot X)) (R^2 = 0.995)$
	ISEER	-0.369	0.781	21.142.970	729.082	0.987	0.027	0.278	$0.745 \cdot X + 0.723 (R^2 = 0.986)$
	ISO CSPF	2.405	1.603	33.306	1.919.929	0.974	0.051	0.385	$0.539 \cdot X + 1.232 (R^2 = 0.970)$
China ADE	lapan APF	2.936	3.210	486	2.193.369	0.982	0.036	0.321	$1.849 \cdot \exp((0.160 \cdot X)) (R^2 = 0.967)$
China APF	Korea CSPF	2.215	1.455	50.896	1.076.342	0.980	0.040	0.338	$0.527 \cdot X + 1.233 (R^2 = 0.976)$
	U.S. SEER	2.525	1.695	21.683	1.818.168	0.975	0.049	0.377	$0.519 \cdot X + 1.280 (R^2 = 0.969)$
	EU SEER	2,198	1.598	29.631	1.717.656	0.973	0.053	0.391	$0.600 \cdot X + 0.887 (R^2 = 0.970)$
				2578-078-998					
Japan APF	ISEED	-9 160 614	1 788	0.001	8 854	0.004	0.012	0.248	$5207.\ln(X) - 2840 (R^2 - 0.956)$
	China APF	- 5,100,014	5.614	3 953	8.002	0.994	0.012	0.240	$6.061 \cdot \ln(X) - 3.546 (R^2 - 0.967)$
		6 922 450	0.075	2.505.06	10 220	0.567	0.027	0.370	$4.428 \ln(X) - 3.340 (R^2 - 0.976)$
	Korea CSPE	-555 710	0.575	2.39E-00	13 061	0.969	0.021	0.328	$4.300 \ln(X) - 2.507 (X = 0.970)$
		_/ 881 88/	0.335	1.63E-07	11 142	0.090	0.015	0.313	$4.342 \cdot \ln(X) - 2.552 (X = 0.365)$
	EU SEER	-7.207.856	1,180	2.94F-05	9 904	0.992	0.017	0.290	$4.923 \cdot \ln(X) - 2.255 (R^2 = 0.975)$

Won Park, et al., "Lost in Translation: Overcoming Divergent Seasonal Performance metrics to Strengthen Air Conditioner Energy-Efficiency Policies," Energy for Sustainable Development, February 1, 2020, <u>https://eta-</u> <u>publications.lbl.gov/sites/defaul</u> <u>t/files/1-s2.0-</u> <u>s0973082619313560-main.pdf</u>.

Air Conditioners

Recommendations

- At a minimum, all economies should adopt technology-neutral MEPS of 5.1 Wh/Wh or greater.
- Additionally, any economy using an energy efficiency ratio (EER) should switch to a seasonal performance metric for fixed and variable-speed ACs.

Thank you!

Lei (Steven) Zeng China Program Lead szeng@clasp.ngo

Matt Malinowski

Senior Manager mmalinowski@clasp.ngo

