Smart-use of Digital Technology for Sustainable Agriculture in Korea

ea

May 24, 2022.

Youngah Lim

The Advent of the Digital Age

What is the Digital Age?

- Defined as INFORMATION AGE
- After introducing the personal computer and subsequent technology → Transfer information freely and quickly

Living in the Fourth Industrial Revolution

- Not only the technology-driven change
- Opportunity to use converging technology to be inclusive and human-centered ⇔ Changed to DATA ECONOMY

Change of Common Lives

- Data + Network + Al
 - Important factors of INNOVATION & COMPETITIVENESS
 - Post-COVID19, Digital capacity becomes more important

Land & Labor oriented

• Land/Labor/Capital + Technology

Data & Facility & Infrastructure oriented

• Facility & Infrastructure + Data + Sensor

Korean New Deal Strategy

- National Development Strategy after COVID19
 - Introduced on July 14, 2020 → Korean
 New Deal 2.0 in 2021
 - Economic Chaser → Economic Leader
 - Carbon-dependent → Low-Carbon
 Economy
 - Inequality → Inclusive & Fair Society

Digital New Deal in Korea

- Strengthening <u>D.N.A. Ecology</u>
- Advancing <u>Un-tact Infrastructure</u>
- Fostering <u>new Hyper-connected</u>
 <u>Industries</u> such as Metaverse
- Digitalizing S.O.C.

Korean New Deal in Agri-food Industry

• <u>('21) Digital New Deal</u> includes 14 projects

- Establishing smart farms, autonomous infrastructure, online auction system for agricultural and livestock products, etc.
- <u>('21) Green New Deal</u> includes 5 projects
 - Establishing automatic water-quality monitoring system, supporting replacement of old diesel machines, subsidizing livestock manure treatment facilities, etc.

Data-based Digital Agriculture

Digital Agriculture is NOT new!

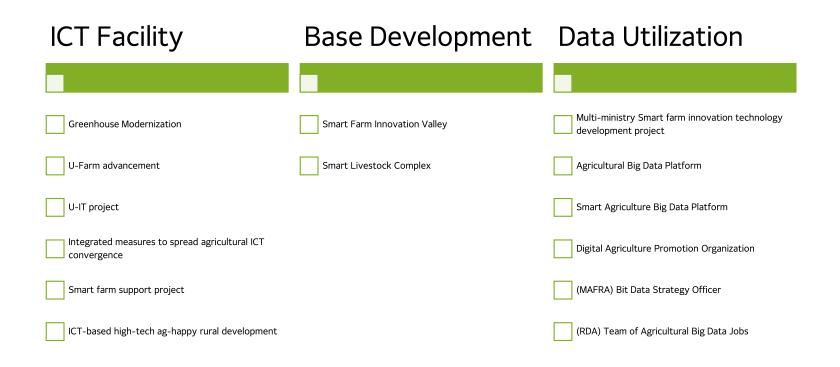
- Precision Agriculture (PA)
 - Right timing
 - Right place
 - Right amount
- * Right = Sustainable

- Productivity & Income increase / Improving production efficiency
- IoT, Al, Clouds, Big Data
- Production, processing & distribution, consumption, front & back industries

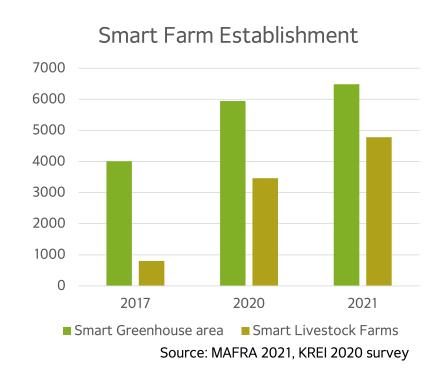
DIGITAL AGRICULTURE

- Productivity & income increase / Automation
 sustainability increase
- IoT, AI, Clouds, Big Data, Platform, Solution
- Production, processing and distribution, consumption, front & back industries

PRECISION AGRICULTURE

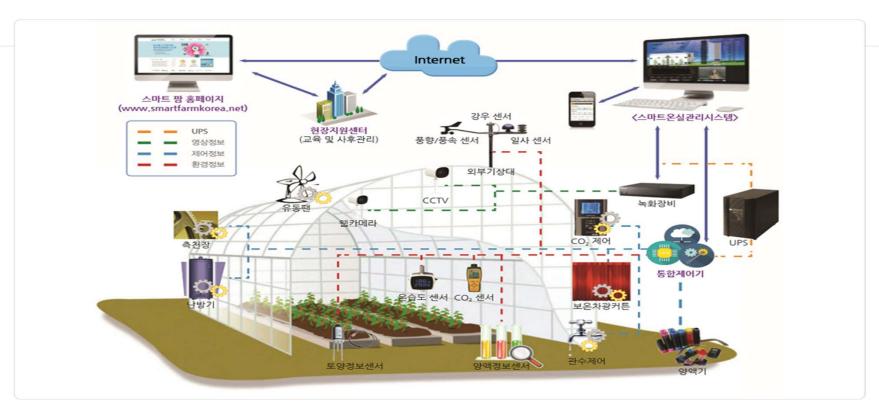

- Optimized resource use / Minimum environmental pollution / Cost saving
- · GPS, Drone, Sensor VAR
- Farming field

Source: Seo et al. 2020.

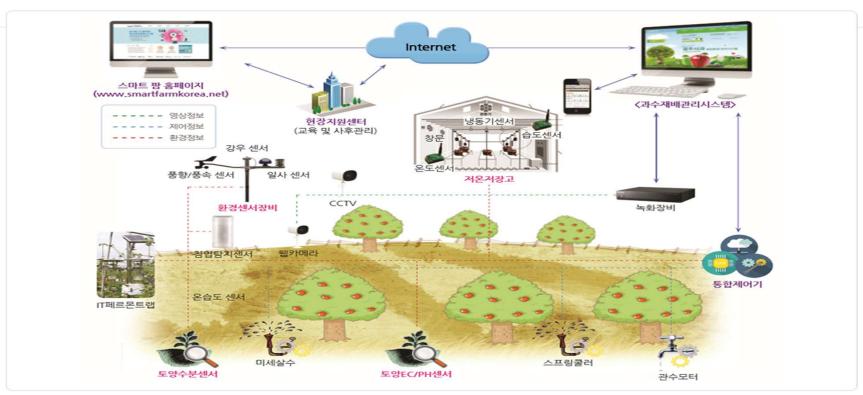

How Digital Agriculture Works as PA

Category	Main Technology	Machine & Devices
OBSERVATION	 Crop field/Crop/Machinary sensing (water content, water stress, temperature, conductivity, wind direction, wind speed, etc.) Wireless data interchange Telematics, IoT 	 Weather sensors (humidity, temperature, water content, sunshine duration) Soil sensors (water content, temperature, pH) Camera (RGB, thermo-graphic) NIR, GPS, drone, communication modules, power supply
PRESCRIPTION	 Field mapping Prescribed map generation Database Big data analysis Al, machine learning 	 Field mapping S/W Big data server (GPU, CPU, HDD) Big data analysis S/W
ACTIVITIES	 Wireless data interchange Autonomous driving & activities Remote controller Planting & fertilization variable controller Irrigation controller 	 GPS, GNSS Agricultural machine Drone, camera Spray nozzle Sensor of line recognition Actuator, motor, load cell Flow & sound sensors
RESULT ANALYSIS	 Field management (water, fertility, yield) Database Big data analysis AI, machine learning 	 Big data server (GPU, CPU, HDD) Big data analysis S/W

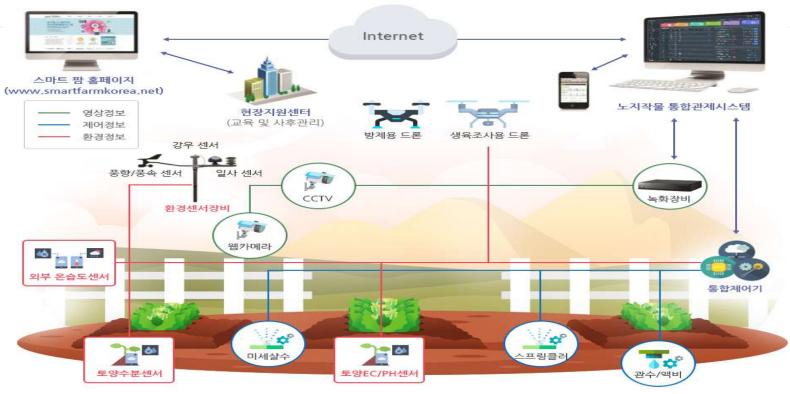
Korean Policies about Digital Agriculture



Current Status of Digital Agriculture in Korea



- After using smart farms
 - Production quantity 32.1% ↑
 - Labor hours 13.8% ↓
 - Pest disease 6.2% ↓
- 59.5% of farmers would like to establish smart farms
- So far, productivity and saving cost are main concers


Smart Greenhouse in Korea

Smart Orchard in Korea

Smart Field Crop in Korea

Smart Livestock Farm in Korea

Smart Livestock to Carbon Neutrality

- 2050 Carbon Neutral Strategy in Korea
 - Productivity of Milk cows and chickens is already high
 - But we can expect to double up the productivities of cattle cows and pigs until 2050 through Smart Livestock Farms
 - (In the national scenario) Productivity increase of smart farms will help to reduce the number of animals and its related GHG emissions

Suggestion for the Future

• 1st generation Smart Farm → 2nd generation Smart Farm

1st Generation

- Support convenience of farming
- Productivity increase
- Need ICT technology capacity

2nd Generation

- Cloud platform based on data and Al
- Support decisionmaking
- Optimized decision of low-ICT capacity farmers

3rd Generation

- 1st generation + 2nd generation
- e.g. autonomous robot farming

Suggestion for the Future

Digital New Deal + Green New Deal (+ Human New Deal)

- Digital technology can be tools to support environmental sustainability
- When developing technologies, need to take environmental factors into accounts
- User-friendly platform ⇔ Farmers do not need to understand all pathways of environmental consequences

Suggestion for the Future

Hardware oriented > Software + Data oriented

- Limit to have an expensive initial investment, and a few farms can be beneficial
- Need the algorithm to support the farmers' decision-making
- People can have access to S/W at the same time
- Help to necessarily analyze the economic and environmental risks

Thank you very much!