
1. What are fine bubbles?

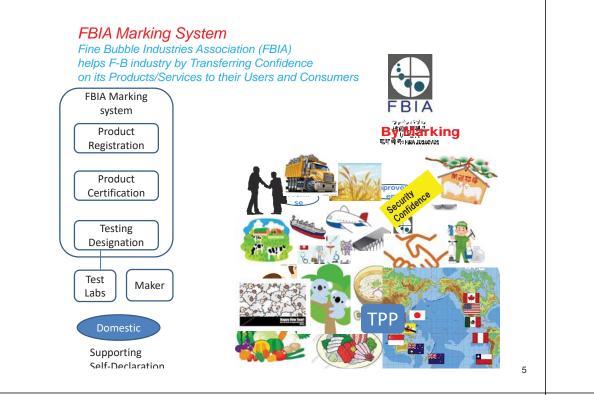
The small size, high stability and high surface area of FBs give them unique features

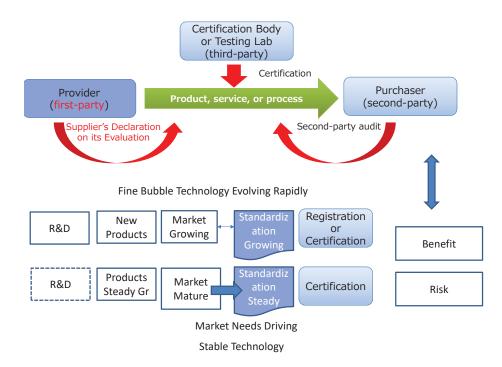
 $300\mu m \rightarrow \text{few meters per minute}$ $10\mu m \rightarrow \text{few millimeters per minute}$ $0.1\mu m \rightarrow \text{does not rise (Brownian Motion)}$

APEC Workshop I

b)18:10-18:40
"Standardization
and
certification
as technical platform of
fine bubble technology"Mr. Takeyuki FUSE and Dr. MitsuruTANAKA,
Ene Bubble Industries Association (FBIA)
Japan

Standardization and certification as technical platform of FBT"


0.5 h (Mr.FUSE & Dr.TANAKA)


Basics of conformity assessment and Introduction of an example of conformity assessment

ABSTRACT:

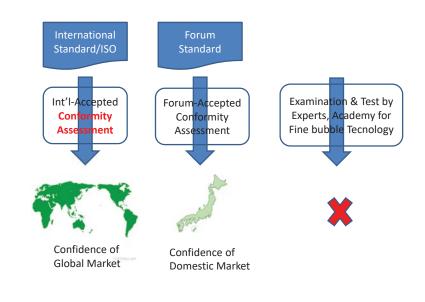

Technical committee "ISO TC 281 "Fine bubble technology"" was established in order to support sound market formation by developing standards. Delegates from many economies in APEC area are actively participating the discussion. So far, 9 International Standards, 2 Technical Specifications and 1 Technical Report have been published and 7 standards are under development. The standardization is also necessary for objective evaluation of R&D fine bubble technology. The progresses of the role of standardization in the TC 281 will be introduced.

The products on market and technology for R&D with objective evidence and the establishing the infrastructure for the evaluation will be necessary. Internationally agreed conformity assessment will be the final goal for guaranteeing the confidence of the evaluation for mature technology. Currently, in fine bubble products area the technology is evolving, although rapidly, and the market is just growing. An example of conformity assessment system accommodating with current stage of the evolution of the technology will be introduced.

3. Three-layer configurations in ISO/TC281

3

4. Fine bubble standards in ISO/TC 281 (Red:AAWT)

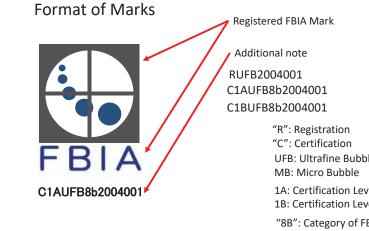

Published standards

- ISO 20480-1:2017 General principles for usage and measurement of fine bubbles -- Part 1: Terminology
- ISO 20480-2 General principles for usage and measurement of fine bubbles -- Part 2: <u>Categorization</u> of the attributes of fine bubbles
- ISO 20298-1 <u>Sampling and sample preparation</u> for measurement -- Part 1: Ultrafine bubble dispersion in water
- ISO 21255 Storage and transportation of ultrafine bubble dispersion in water
- ISO/TR 23015 Measurement technique matrix for the characterization of fine bubbles
- ISO 21910-1 Characterization of microbubbles -- Part 1: Off-line evaluation of size index
- ISO 24261-1:2020 Fine bubble technology -- Elimination method for sample characterization --Part 1: Evaluation procedure
- ISO/TS 21256-1 Cleaning applications -- Part 1Test method for cleaning salt (NaCl)-stained surfaces
- ISO 21256-2 Cleaning applications -- Part 2: Test method for cleaning machine-oil stained surfaces of machined metal parts
- ISO/TS 23016-1 <u>Agricultural applications</u> -- Part1Test method for evaluating the growth promotion of hydroponically grown lettuce
- ISO 23016-2 <u>Agricultural applications</u> -- Part 2: Test method for evaluating the promotion of the germination of barley seeds
- ISO 20304-1 <u>Water treatment applications</u> -- Part 2: Test method for evaluating decolorization performance of ozone fine bubble water generating syst

How to use the mark?

On the surface of the products On the package On the catalogue On the web-site On the name card

FBIA Web-site & List


IDEC

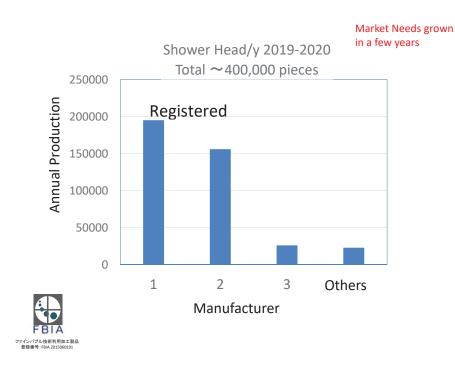
ultrafine

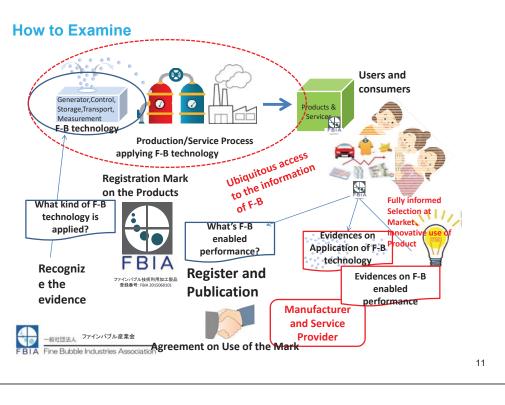
Product **UFB** Generator

Mark at Front Panel

Explanation on the Mark: FBIA certifies the fine bubble characteristics of this product is of the level 8B of ultrafine bubble in FBIA category.

UFB: Ultrafine Bubble


1A: Certification Level 1A 1B: Certification Level 1B


"8B": Category of FB Char

2004001

: Issued in April 2020, the first in the month

9

To Register after examining sound use of "Fine Bubble" and "Ultra Fine Bubble", "Number concentration" as ISO TC 229 standard.

3.2 fine bubble

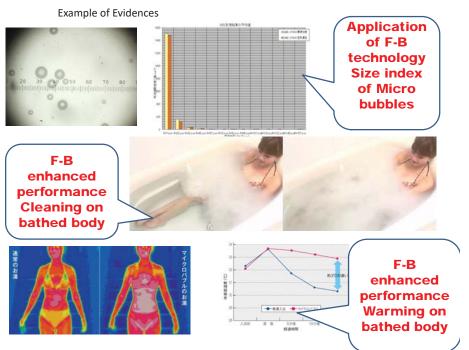
bubble (3.1) with a volume equivalent diameter (3.8) of less than 100 μm

Note 1 to entry: 100 μm is also represented as 1 \times 10 $^{-4}$ m.

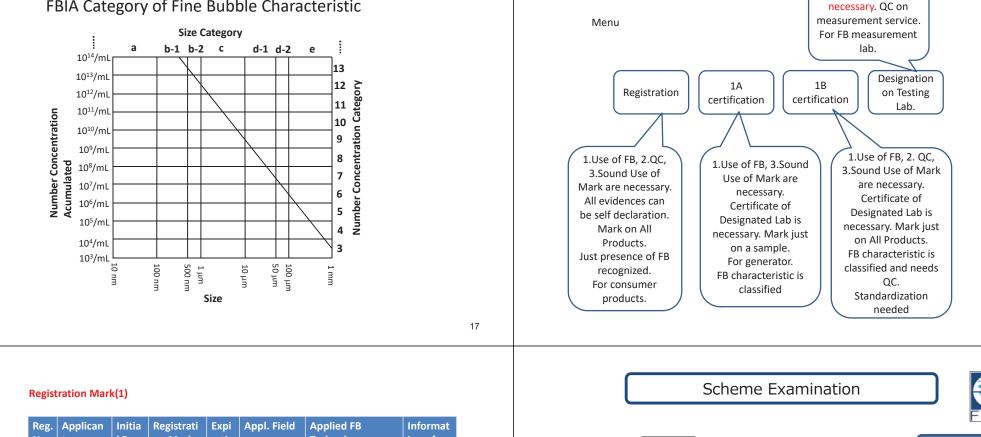
Note 2 to entry: Annex A provides further information on the use of terms "fine bubble" or "ultrafine bubble" (3.3), instead of "nanobubble".

3.3 ultrafine bubble

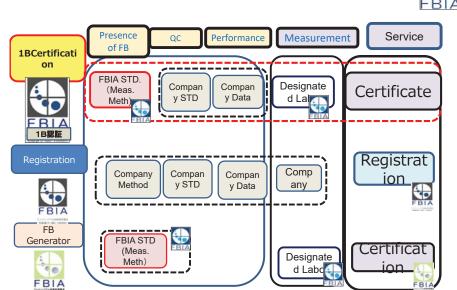
Fine bubble (3.2) with a volume equivalent diameter (3.8) of less than 1 μ m


Note 1 to entry: Measured examples of ultrafine bubbles in water by particle characterization methods, in practical application fields, mostly range between 100 nm and 200 nm. The measured results can include contaminants, as well as ultrafine bubbles. (See 3)

3.7 bubble number concentration


number of bubbles (3.1) per unit volume of medium

Note 1 to entry: The medium can be solid medium (3.5) or liquid medium (3.6).



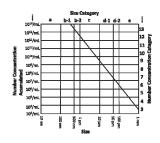
Examination & Evidences

Reg. No.	Applican t	Initia I Reg. Date	Registrati on Mark	Expi ratio n Date	Appl. Field	Applied FB Technology	Informat ion of Applican t
RBG 150 800 1	Science	2015 /10/3 0		2020 /10/ 29	Cleaning, Home Use	Bath Water supply using FBs by Pressurizing Dissociation & Mechanical Shear	Homepa ge URL
RFG 170 400 1	IDEC	2017 /06/0 1		2021 /05/ 31	UFB Generator	Multi purpose generator by Pressurizing Dissociation	Homepa ge URL
RAF 170 400 1	IDEC	2017 /06/0 1		2021 /05/ 31	Agri-, Foods, Vegetable	UFB grown Tomates & their Juice	Homepa ge URL

Proficiency test is

16

1A Certification Mark

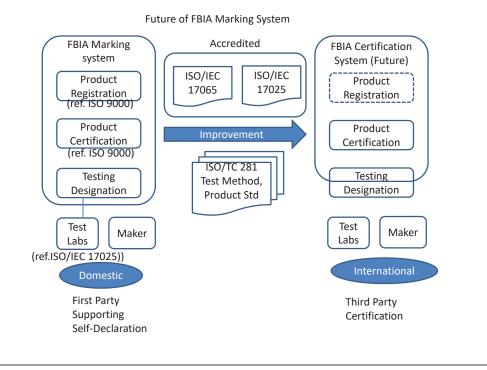

Reg. No.	Applicant	Initial Reg. Date	Certificat ion Mark	Range of FB	Product	Information of applicant
C1AMG 170800 1	Nitto- Seiko	2017/08/2 5		Micro Bubble	Generator, Multi purpose	Homepage URL
C1AMG 170900 1	Science	2017/11/2 9	FBIA Procrisses	Micro Bubble	Generator, For Bath adapter	Homepage URL
C1AUG 190300 1	Aqua Solutions	C1AUG190 3001		Ultrafine Bubble	Generator, Multi purpose	Homepage URL
C1AUG 190700 1	Hatano	2019/08/3 0		Ultrafine Bubble	Generator, For Bath adapter	Homepage URL
C1AUG 190700 2	Hatano	2019/08/3 0		Ultrafine Bubble	Generator, For Bath adapter	Homepage URL

Registration Mark(2)

RWG 1705 001	Toshiba Life Style	2017 /06/ 23	2021 /06/ 22	Hom e, Was hing	Washing Machine, Drying Machine. UFB generated by cavitation	Home page URL
RFM 1712 001	Ligaric	2019 /01/ 15	2021 /01/ 14	UFB Gene rator	Multi purpose generator by Gas- Liquid Mixing and Shearing	Homepa ge URL
RWT 1712 001	Ligaric	2019 /01/ 15	2021 /01/ 14	Build ing, Was hing	Service, by UFB water for sanitary facilities	Homepa ge URL
RFS1 9030 01	MTG	2019 /08/ 30	2021 /08/ 29	Clea ning, Beau ty	Shower-head, UFB by Pressuring Dissociation and Cavitation	Homepa ge URL
RUN 1907 001	Hatano	2019 /10/ 31	2020 /10/ 30	Clea ning, Hom e	Bath Adapter, by UFB water	Homepa ge URL

1B Certification Mark

Reg. No.	Applican t	Initial Reg. Date	Certificat ion Mark	End Valid Term	Applicati on field	FB Technolo gy	Informati on of applicant
C1BUFB7 ab	Science	2019/10/ 04	FBIA	2021/10/ 03	Ultrafine Bubble Shower Head	Generati on Method Changea ble	Home Page URL



Registration Mark(3)

RUFB MB2 0060 01	Rinnai	2020 /06/ 01		2021 /05/ 31	Clea ning, Hom e	Bath Supply for MB water	Homepa ge URL
RUFB MB2 0010 01	MTG	2020 /06/ 30	FBIA	2021 /06/ 29	Clea ning, Beau ty	Shower-head, UFB by Pressuring Dissociation and Cavitation	Homepa ge URL
RUFB 2003 001	White Essence	2020 /09/ 18	FBIA	2021 /09/ 17	Medi cal, Profe ssion al	Dental Care UFB generator by Pressurized Dissociation	Homepa ge URL
	SANEI						
	DAINICHI						

22

21

Designation Mark for Testing Laboratories

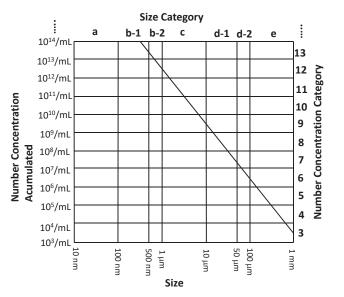
Reg. No.	Test Laborato ry	Initial Reg. Date	Designati on Mark	End Valid Term	Test Performa nce	Test Objects	Informati on on Applican t
DTU1705 D01	IDEC	2017/06/ 05	BIA	2021/06/ 04	Size & Number Concentr ation	UFBs in Water	Homepa ge URL
DTU1712 D01	Izumi Tech	2017/12/ 20	BIA	2020/12/ 19	Size & Number Concentr ation	UFBs in Water	Homepa ge URL
DTU1801 001	Green Blue	2018/05/ 07	Prototageorge Brissons FBIA	2021/05/ 06	Size & Number Concentr ation	UFBs in Water	Homepa ge URL

FBIA registers or certifies the claimed statements of applicant on:

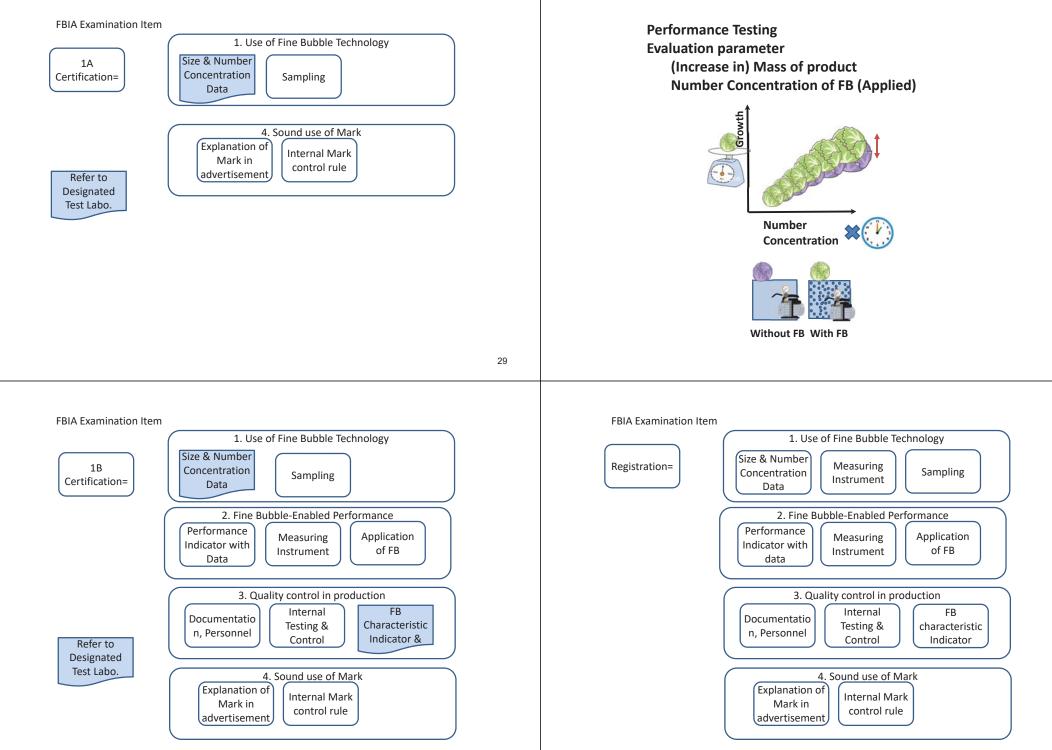
- 1. Use of Fine Bubble Technology
- 2. Fine Bubble-Enabled Performance
- 3. Quality control with respect to Fine Bubble Technology
- 4. Sound use of marks and outcome of the registration or certification

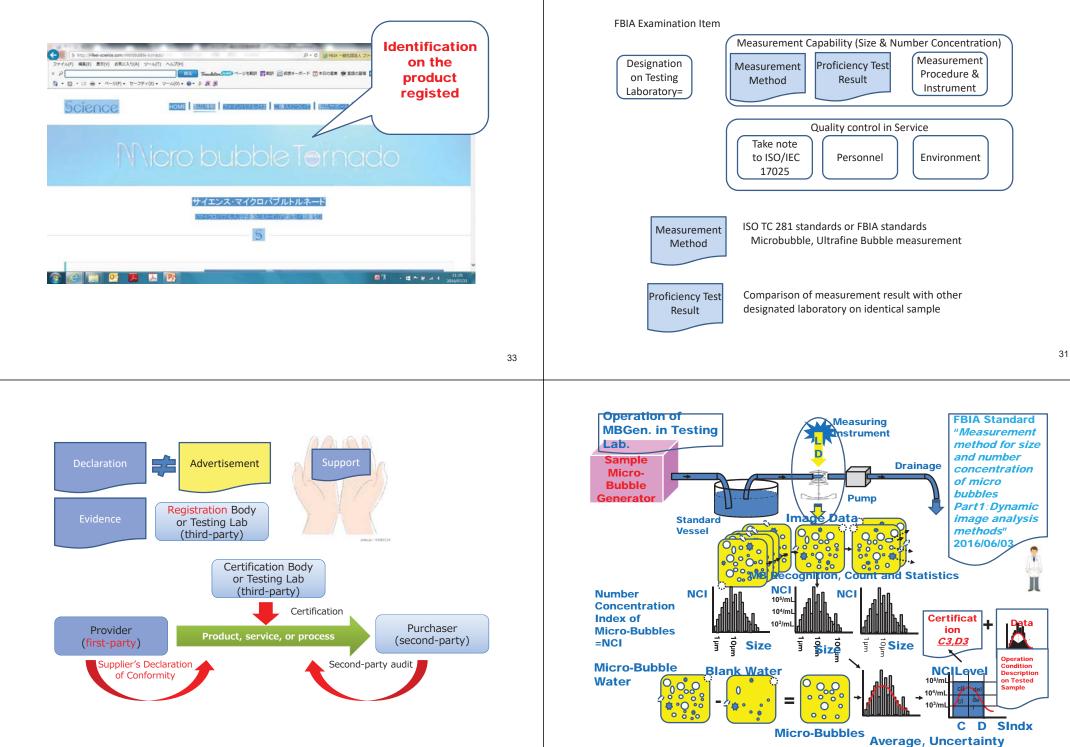
based on the its technical examinations on the submitted evidences including audit.

Examples of evidences are;


- 1. size and number concentration of fine bubbles
- 2. change in performance parameters due to presence of fine bubble
- 3. standardization on quality control of the product
- 4. practical use of marks in the advertisement

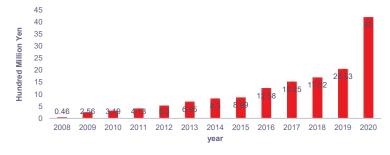
Type of evidences are:


- 1. Self declaration (Company standard)
- 2. Third party declaration (ISO/IEC 9000, FBIA designated lab.,)


Reference of evidences are: Company standard, FBIA standard, JIS, ISO/IEC

FBIA Category of Fine Bubble Characteristic

25



1. Large Development of Actual Commercialization of Fine Bubble Technology

- Actual Commercialization of Fine Bubble Technology has been developed largely mainly for the application to consumer equipment including shower head.
- Further development can be expected worldwide.

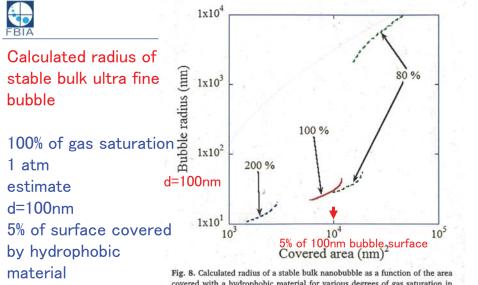
AMOUNT OF SALES INCLUDING SHOWER HEAD CONTAINING ULTRAFINE BUBBLES (S COMPANY)

vright 2014 Fine Bubble Industries Association. All rights reserved

2. Recent Scientific Progress for Ultrafine Bubbles

Many scientific publications have been published from several years ago related to fine bubble technology, especially ultrafine bubble technology. (2015-2018)

The mechanism of longlife duration (nearly stable) of ultrafine bubble (less than 1000nm) has been tried to be cleared by the interaction between liquid-gas surface and the hydrophobic substances. Electron microscope measurements (TEM) have contributed largely.



Current Status of Fine Bubble Technology

Akira YABE

Special Advisor & Researcher Emeritus National Institute of Advanced Industrial Science and Technology (AIST) Japan Fellow, Technology Strategy Center, New Energy and Industrial Technology Development Organization (NEDO) Japan Trustee, Fine Bubble Industries Association (FBIA) JAPAN

covered with a hydrophobic material for various degrees of gas saturation in liquid water (80, 100, and 200%). The ambient liquid pressure is $p_0 = 1$ atm. The temperature is 20 °C. Reprinted with permission from K. Yasui, T. Tuziuti, W. Kanematsu, K. Kato, Dynamic equilibrium model for a bulk nanobubble and a microbubble partly covered with hydrophobic material, Langmuir 32 (2016) 11101-11110. Copyright (2016) American Chemical Society.

TEM Images of Organic Material(hydrophobic material) on the surface of ultra fine bubble (Sugano K., Miyoshi, Y. Inazato S. 2017) **Transmission Electron** Microscope (TEM) 500nm liquid phase sample without freezing Diameter is 173nm.

Fig. 9. TEM images of a bulk nanobubble in aqueous solution without freezin [1]. (a) In aqueous oleic-acid solution, (b) in aqueous α-tocopherol solution. The diameters are 105 nm and 173 nm in (a) and (b), respectively. Courtesy of Panasonic corporation, Japan. Reprinted with permission from K. Sugano, Y. Miyoshi, S. Inazato, Study of ultrafine bubble stabilization by organic material adhesion, Jpn. J. Multiphase Flow 31 (2017) 299-306.

Copyright 2018 Fine Bubble Industries Association. All rights reserved

situation

Copyright 2018 Fine Bubble Industries Association. All rights re-

Various kinds of application technology utilizing ultra fine bubble have been experimented basically. (New data and Characteristics Investigation: Toilet Cleaning, Semi-conductor Cleaning, Ultra fine bubble measurement in cultivated water etc.)

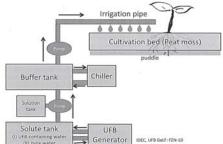


Figure 8. The plant factory with ultra-fine bubbles (UFB)-added medium supply system. A second line em, identical except with pure water as a solute without UFB generator, is used for the control case

Bubble

Wall

Mechanism of Long Lifespan of Ultra Fine Bubble (Yasui K. et al. 2016,2018)

Dynamic equilibrium model based on the effect of hydrophobic material on the surface of ultra fine bubble

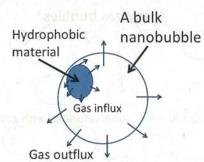
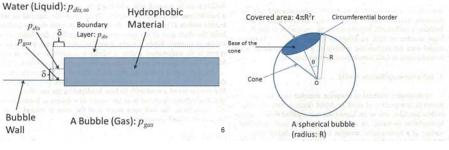
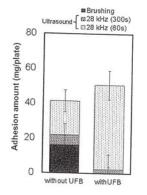




Fig. 6. Dynamic equilibrium model [55]. Reprinted with permission from K Yasui, T. Tuziuti, W. Kanematsu, K. Kato, Dynamic equilibrium model for a bulk nanobubble and a microbubble partly covered with hydrophobic material, Langmuir 32 (2016) 11101-11110. Copyright (2016) American Chemical Society

Scale can be removed easily by the ultrasound application with FBIA ultrafine bubble application (weaker structure containing bubbles)

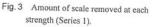
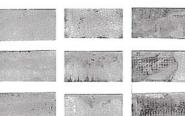



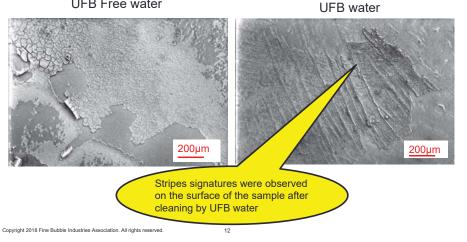
Table 2 Composition of scale (Series 1). (96) without UFB with UFB Ca 36 36 P 21 22 Si 31 32 others 12 10

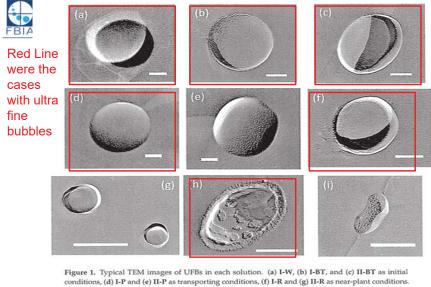
without UFB with UFB at first with UFB

Photo 2 Scanning image (W/B) of residual scale on plate after each washings (Series 2).

with UFB

Table 3 Percentage of residual scale on plate after each washings with ultrasound (Series 2). Area removed (%) SD without UFB 7.1 5.7 with UFB 7.4 3.6 at first 30 days


57.1 17.0



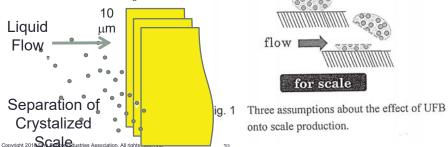
Cleaning with rotating UFB water

Comparison of cleaning samples' SEM images after cleaning

UFB Free water

Each symbol shows the following: I = prepared with UFB generator, II = control water without UFB generator. The other symbols indicate location: BT = buffer tank; P = irrigation pipe; and R = rhizosphere. I-W is the tap water before entering the UFB generator. (h) A unique UFB from I-R solution that had accumulated much impurity. (i) Impurity masses observed independently of UFBs in II-R solution. Each scale shows 100 nm except for those in (g-i), which show 500 nm.

Copyright 2018 Fine Bubble Industries Association. All rights reserved.


Effect of Ultra Fine Bubble onto Accumulation and Structure of Urinary Calculus (Toilet Cleaning)

(Okuda T, Nishijima W. etc, 2018)

Fundamental Research on the mechanism of Scale Removal Assumptions

1.Separation & Removal of the scale by the effect of immersed ultra fine bubbles between scale and the surface

2. Characteristics of scale become weaker structure containing ultra fine bubbles

Application Fields of Fine Bubble Technology

- 1. Engineering Application
- 2. Environmental Application
- 3. Agricultural and Food Application
- 4. Medical and Cosmetic Application

Recent Scientific Publications related to Fine Bubble Technology(2015-)

(1) H. Kobayashi, S. Maeda, M. Kashiwa and T. Fujita, "Measurement and Identification of Ultrafine Bubbles by Resonant Mass Measurement Method", Proc. SPIE 9232, International Conference on Optical Particle Characterization (OPC 2014), 92320S (2014)

(2) T. Uchida, H. Nishikawa, N. Sakurai, M. Asano and N. Noda, "Ultra-Fine Bubble Distribution in a Plant Factory Observed by Transmission Electron Microscope with a Freeze-Fracture Replica Technique", Nanomaterial, Vo.8, No.152, pp.1-12(2018)
(3) K. Yasui, T. Tuziuti, W. Kanematsu and K. Kato, "Dynamic Equilibrium Model for a Bulk Nanobubble and a Microbubble Partly Covered with Hydrophobic Material", Langumuir DOI10.1021/5B04703 (2016)

(4) K. Yasui, "Mechanism for Stability of Ultrafine Bubbles", Japanese J. Multiphase Flow, Vol.30, No.1, pp.19-26 (2016)

(5) K. Sugano, Y. Miyoshi and S. Inazato, "Study of Ultrafine Bubble Stabilization by Organic Material Adhesion", Japanese J. Multiphase Flow, Vol.31, No.3, pp.299-306 (2017)

(6) A. Sonoda, "Measurement of Ultra Fine Bubble Using Laser Diffraction Method" Journal of Society of Powder Technology Japan, Vol.54, No.9, pp590-595 (2017) (7) K. Takahashi, S. Ohuchi, K. Saito, M. Hirasawa and H. Sakurai, "Simultaneous Determination of the Size and Concentration of Fine Bubbles in Water by Laser-light Scattering" Applied Optics, Vol.57, No.2, pp.225-229 (2018)

Copyright 2018 Fine Bubble Industries Association. All rights reserved.

Classification of Effective Functions of Fine Bubbles (Fine Bubbles and Ultrafine Bubbles)

15

A.Cleaning Effects:

Copyright 2018 Fine Bubble Industries Association. All rights reserved

- ·Toilet Cleaning,
- •Removal of Salt from the Bridges,
- Cleaning of Vegetables
- ·Removal of Contaminants on the Semiconductor Wafers,
- ·Cleaning inside of Mouth, Cleaning of Ceramic membrane
- B. Water Treatment (including Soil Treatment):
- Dissolution of Oxygen Lack of Ponds and Lakes
- Floatation Mining of Minerals
- Water Treatment of Disposed and Contaminated Water (Minimizing the total amount of disposal in Isolated Area Promoting the Growth of Bacterium for Disposal Treatment),
 Removal of Radioactive Substances from the Soil
- C. Sterilizing Promotion Effect:
- •Minimize the Total Usage Amount of Ozone,
- Maximize the Effect of Sterilizing Liquid by Changing the PH,

(8) T. Okuda, K. Matsui, K. Hashimoto, Y. Ueda, S. Nakai and W. Nishijima, "Effect of Ultrafine Bubble onto Accumulation and Structure of Urinary Calculas", Japanese J. Multiphase Flow Vol.32, No.1 pp.12-18 (2018)
(9) P. Klintham, S. Tongchitpakdee, W. Clinsirikul and W. Mahakarnchanakul, "Combination of microbubbles with oxidizing sanitizers to eliminate Escherichia coli and Saimonella Typhimurium on Thai leafy vegetables", Food Control Vol.77, pp.260-269 (2017)
(10) A. Ghadimkhani, W. Zhang and T. Marhaba, "Ceramic Membrane Defouling (Cleaning) by Air Nano Bubbles", Chemosphere Vol.146, pp.379-384 (2016)
(11) S. Hamamoto, "Fine Bubble Transport in Porous Media towards Application for Soil Remediation", Japanese J. Multiphase Flow, Vol.32, No.1, pp.19-25 (2018)
(12) S. Liu, S. Oshita, Y. Makino, Q. Wang, Y. Kawagoe and T. Uchida, "Oxidative Capacity of Nanobubbles and Its Effect on Seed Germination", ACS Sustainable Chem. Eng. Vol.4,

pp.1347-1353 (2016)

(13) K. Onoe, Y. Wada, M. Matsumoto, "Fascination and Engineering Application of Reaction Field Utilizing Fine Bubbles", Jap. J. Multiphase Flow, 30, 1, pp.27-36 (2016)
(14) S. Liu, Y. Kawagoe, Y. Makino and S. Oshita, "Effects of Nanobabbles on the Physicochemical Properties of Water: The Basis for Peculiar Properties of Water Containing Nanobabbles", Chemical Engineering Sciences, Vol.93, pp.250-256 (2013)
(15) M. Kashiwa, T. Fujita, H. Yamazaki and T. Fushiki, "Introduction of Sansho-pepper Flavor to Water by Using Nano-bubbles Generator and Its Application to the Field of Food Manufacturing", Annual Meeting of Japanese Society of Multiphase Flow, (2012)

Application Fields of Fine Bubble Technology

1.Engineering Application

- •Removal of Contaminants on the Semiconductor Wafers(A)
- Cleaning of Ceramic Membrane(A),
- Floatation Mining of Minerals(B)
- Minimize the Total Usage Amount of Ozone(C)
- •Maximize the Effect of Sterilizing Liquid by Changing the PH(C)
- Lubrication of Semiconductor Wafer Transportation(E)
- Control the Limiting Transport Phenomena(F)
- 2. Environmental Application
- Toilet Cleaning(A),
- •Removal of Salt from the Bridges(A),
- Dissolution of Oxygen Lack of Ponds and Lakes(B)
- •Water Treatment of Disposed and Contaminated Water(B)
- •Removal of Radioactive Substances from the Soil(B)
- Minimize the Total Usage Amount of Ozone(C)
- Application of Cell Cultivation(D)

D.Growth Promotion:

•Growth Promotion of Vegetables (Leaves such as Lettuce, Increase of Total Harvest and Quality of Tomato)

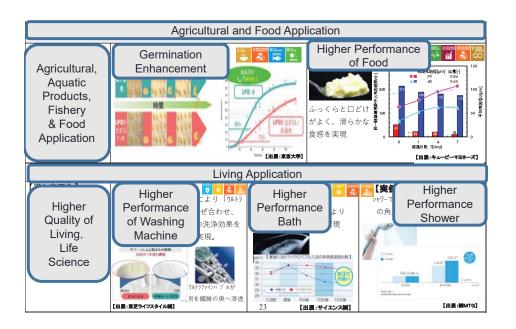
- ·Germination Promotion,
- Application of Cell Cultivation
- Growth Promotion of Fishes
- Prevention of Oxygen Lack of Fishes in Aquaculture
- E.Lubrication Effect:
- ·Lubrication of Semiconductor Wafer Transportation
- F. Promotion & Control of Chemical Reaction.
- Control the Limiting Transport Phenomena
- G.Quality Control of Food
- Control of Calorie of Mayonnaise
- Freshness Keeping of Fishes
- Fragrance Addition

Copyright 2018 Fine Bubble Industries Association. All rights reserved

•	

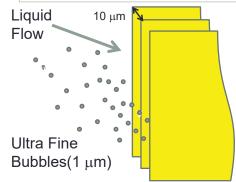
3.Agricultural and Food Application

- Cleaning of Vegetables(A)
- •Water Treatment of Disposed and Contaminated Water(B)
- Minimize the Total Usage Amount of Ozone(C)
- Growth Promotion of Vegetables(D)
- Germination Promotion(D),
- Application of Cell Cultivation(D)
- Growth Promotion of Fishes(D)
- Prevention of Oxygen Lack of Fishes in Aquaculture(D)
- Control of Calorie of Mayonnaise(G)
- Freshness Keeping of Fishes(G)
- Fragrance Addition(G)

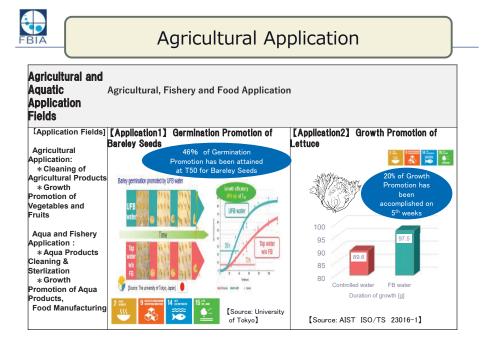

4.Medical and Cosmetic Application

- •Cleaning inside of Mouth(A)
- Minimize the Total Usage Amount of Ozone(C)

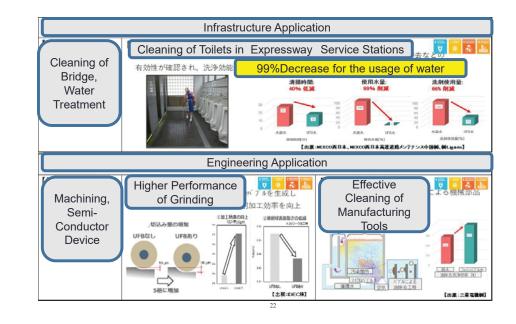
Copyright 2018 Fine Bubble Industries Association. All rights reserved


31.	4	Systematic View of "Application of Fine Bubble Technology"								
				E	Effective Fund	tions				
		Cleaning Effect	Water Treatment	Sterilizing Promotion Effect	Growth Promotion	Lubrication Effect	Control of Chemical Reaction	Quality Control of Food		
	Application Fields	A	В	С	D	E	F	G		
1	Engineering Application	0	0	0		0	0			
2	Environmental Application	0	0	0	0					
(*)	Agricultural and Food Application	0	0	0	0			0		
4	Medical and Cosmetic Application	0		0						

Food & Living Application


Movement & Effect of Ultra Fine Bubble

Ultra Fine Bubbles (have the diameter smaller than $1\mu m$) move along the Streamline of Liquid Flow without the Effect of Buoyancy. Easy to Enter the Narrow Space



Create the Separation Effect of Plates and Scale and Lubrication Effect for Plates Enter into the Narrow Space of Fine Roots of Vegetables for Growth Promotion

Copyright 2018 Fine Bubble Industries Association. All rights reserved.

Infrastructure and Engineering Application

Copyright 2018 Fine Bubble Industries Association. All rights reserved.

Topics

- 1. Terminology
- 2. Categorization
- 3. Physical Properties of Ultrafine Bubbles
- 4. Sampling and Sample Preparation
- 5. Storage and Transportation
- 6. Evaluation Method of Ultrafine Bubbles
- 7. Physical Properties of Microbubbles
- 8. Evaluation Method of Microbubbles

nite

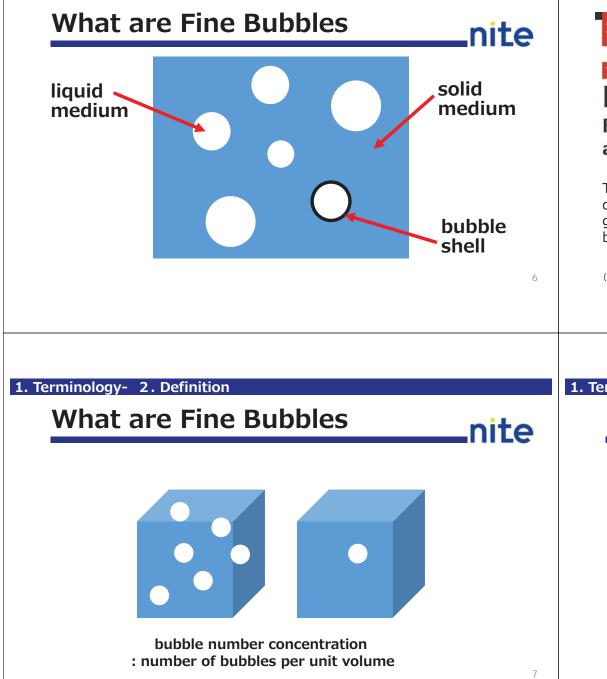
2

Copyright 2018 Fine Bubble Industries Association. All rights reserved

CONCLUSIONS

1. Current Status of fine bubble technology has been explained from viewpoints of commercialized technologies and the scientific investigations conducted so far.

2. For realizing the systematic view of "Application of Fine Bubble Technology", several kinds of viewpoint of functional effects would be very important to be understood and should be reviewed constantly for making wider application targets.

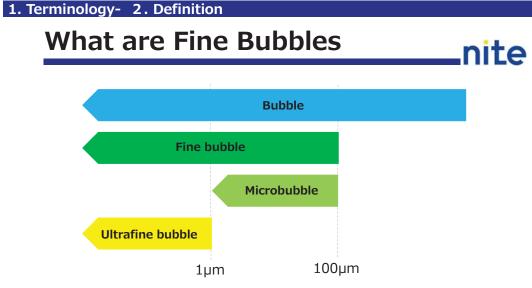

25

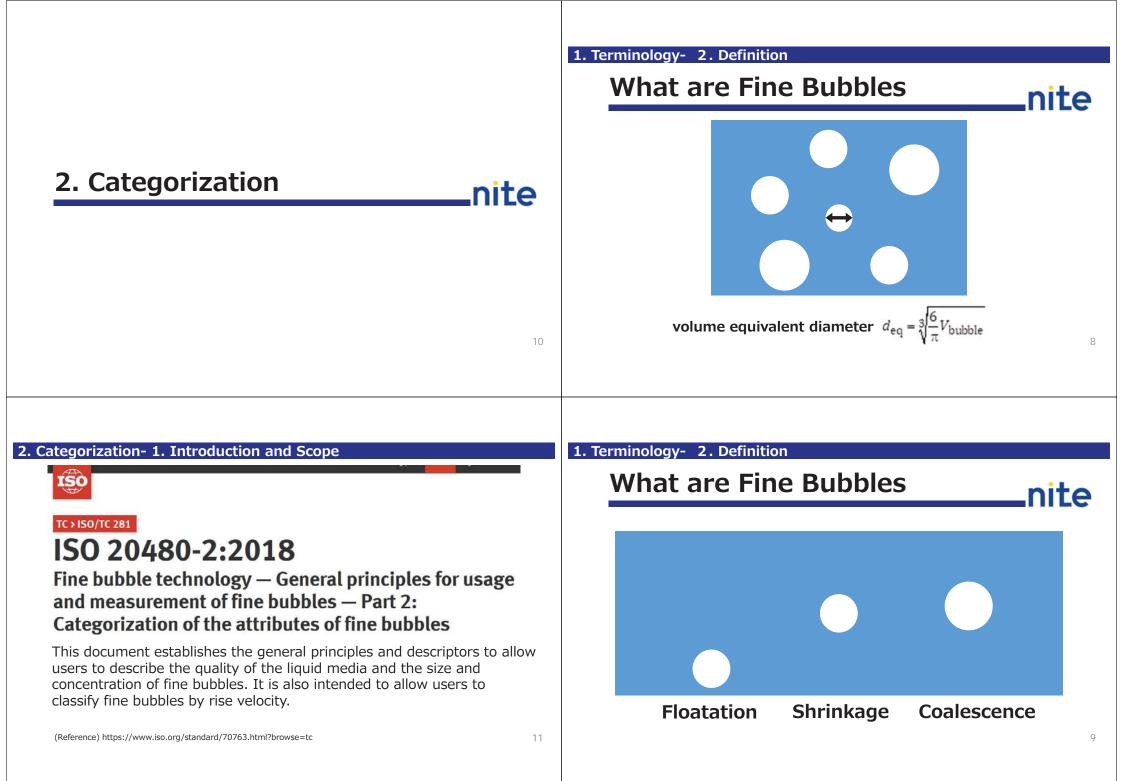
1. Terminology

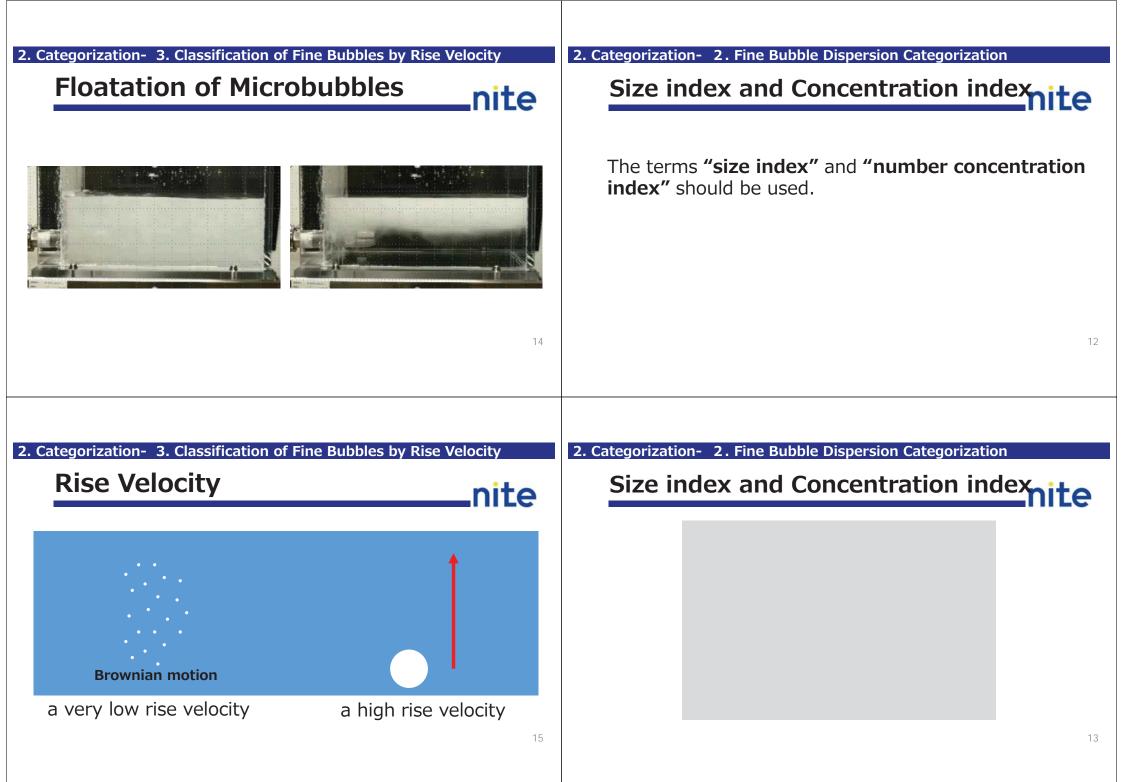
nite

1. Terminology- 2. Definition

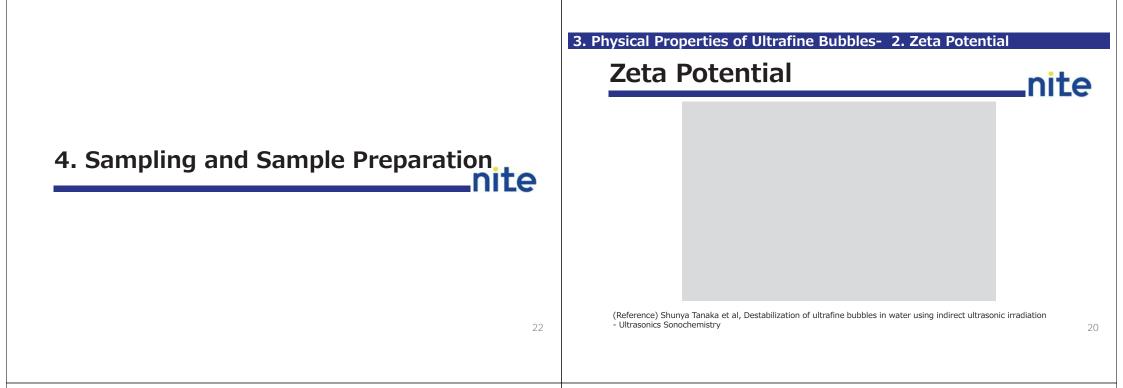
1. Terminology- 1. Introduction and Scope


TC > ISO/TC 281


ISO 20480-1:2017


Fine bubble technology — General principles for usage and measurement of fine bubbles — Part 1: Terminology

This document specifies terminology and definitions used in the area of fine bubble technology. Terminology in this document covers general principles, measurements, and individual applications of fine bubble technology.


(Reference) https://www.iso.org/standard/68187.html?browse=tc

3. Physical Properties of Ultrafine Bubbles- 1. Stability Stability nite	2. Categorization- 3. Classification of Fine Bubbles by Rise Velocity Attributes of Fine Bubbles by Rise Velocity
(Reference) Shunya Tanaka et al, Generation and Long-Term Stability of Ultrafine Bubbles in Water - Chemie Ingenieur Technik	16
3. Physical Properties of Ultrafine Bubbles- 2. Zeta Potential	
Zeta Potentialnite	
	3. Physical Properties of Ultrafine Bubbles nite
(Reference) Shunya Tanaka et al, Destabilization of ultrafine bubbles in water using indirect ultrasonic irradiation - Ultrasonics Sonochemistry 19	17

4. Sampling and Sample Preparation- 1. Introduction and Scope

150

TC > ISO/TC 281

ISO 20298-1:2018

FINE BUBBLE TECHNOLOGY — SAMPLING AND SAMPLE PREPARATION FOR MEASUREMENT — PART 1: ULTRAFINE BUBBLE DISPERSION IN WATER

This document specifies procedures and requirements for sampling and sample preparation of ultrafine bubble dispersions in water.

This document is applicable to relatively stable dispersions where the size and number of bubbles are relatively constant for the duration of the sampling, sample preparation and measurement.

This document is not applicable to less stable fine bubble dispersions or microbubble dispersions.

3. Physical Properties of Ultrafine Bubbles- 3. Dissolved Oxygen

Dissolved Oxygen

(Reference) https://www.iso.org/standard/67588.html?browse=tc

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><image/><image/><image/><image/><image/><image/><image/></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><image/><image/><image/></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><image/><image/><image/><image/><image/><image/><image/><image/></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><image/></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><image/><image/><image/><image/></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><image/><image/></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>
4. Sampling and Sample Preparation- 2. Homogenization Homogenization nite	4. Sampling and Sample Preparation- 2. Homogenization Homogenization nite

4. Sampling and Sample Preparation - 3. Sample Preparation

Sample Preparation

nite

Sampling using a pipette and slowly drawing it down

4. Sampling and Sample Preparation- 2. Homogenization

Homogenization

34

4. Sampling and Sample Preparation- 3. Sample Preparation

Sample Preparation

nite

32

nite

Dilution using water diluent based on its mass or volume

5. Storage and Transportation nite

5. Storage and Transportation- 2. Storage

Storage

_nite

Container: rigid and less gas-permeable material (e.g. glassware)

5. Storage and Transportation- 1. Introduction and Scope

ISO

TC > ISO/TC 281

ISO 21255:2018 FINE BUBBLE TECHNOLOGY — STORAGE AND TRANSPORTATION OF ULTRAFINE BUBBLE DISPERSION IN WATER

This document describes the procedures and equipment for storage and transportation of ultrafine

bubble dispersions in water and specifies the related requirements in order to maintain such bubble

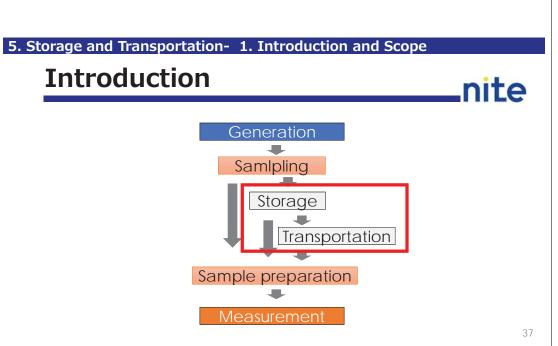
36

characteristics as size and number concentration.

(Reference) https://www.iso.org/standard/70257.html?browse=tc

5. Storage and Transportation- 2. Storage

Storage

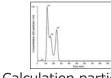

_nite

38

• Container is filled with full amount of water dispersing ultrafine bubbles.

- Environmental conditions such as temperature and pressure should be kept unchanged.
- Temperature should remain above 0℃.

6. Evaluation Method of Ultrafine Bubbles- 1. Measurement Preparation


Particle Tracking Analysis

Visualization the movement by scattered movement of particles light of particles

by Brownian motion

Calculation particle size from the Stokes-Einstein formula

nite

42

nite

5. Storage and Transportation- 3. Transportation

Transportation

nite

• Minimize the effects of temperature, pressure and vibration.

 Before transportation, the stability should be evaluated by test transportation.

6. Evaluation Method of Ultrafine Bubbles- 1. Measurement Preparation

Points of Measurement

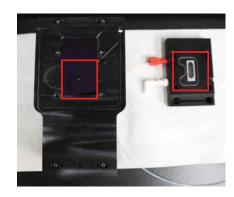
- Distinguish ultrafine bubbles from contaminants
- Confirm lower limit
- e.g. Concentration range 10⁶ to 10⁹ particles per mL
- Confirm reproducibility

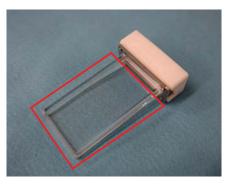
e.g. Concentration: Mode:

2.55e+008 +/- 4.56e+007 particles/ml 154.9 +/- 14.2 nm

6. Evaluation Method of Ultrafine Bubbles nite

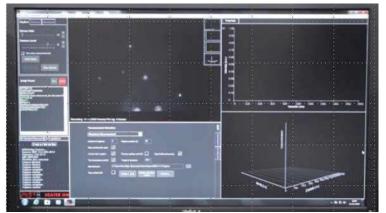
6. Evaluation Method of Ultrafine Bubbles- 1. Measurement Preparation


Put the Module in the Device nite



6. Evaluation Method of Ultrafine Bubbles- 1. Measurement Preparation

Check the Cell


nite

6. Evaluation Method of Ultrafine Bubbles- 1. Measurement Preparation

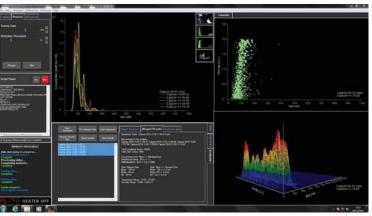
Set the Conditions

_nite

46

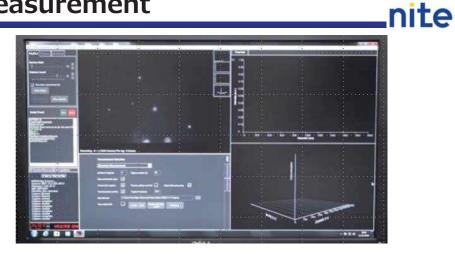
6. Evaluation Method of Ultrafine Bubbles- 1. Measurement Preparation

Inject Sample into the Cell

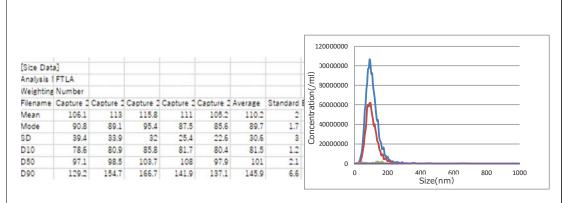

44

nite

6. Evaluation Method of Ultrafine Bubbles- 3. Analysis


Data Analysis

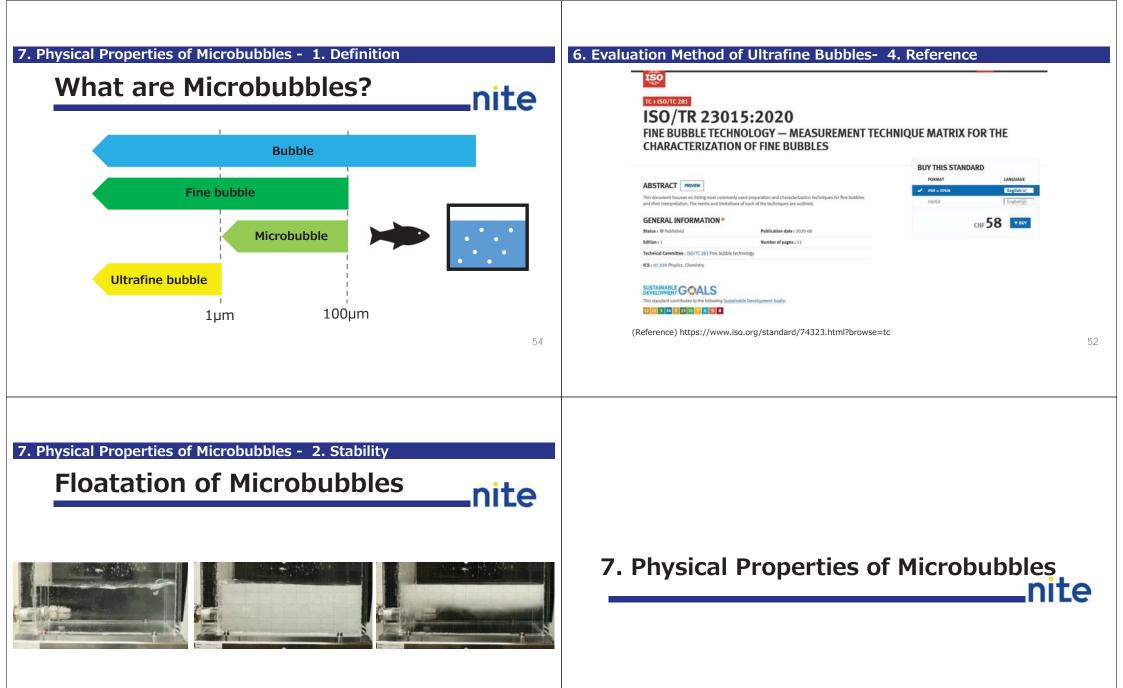
nite


6. Evaluation Method of Ultrafine Bubbles- 2. Measurement

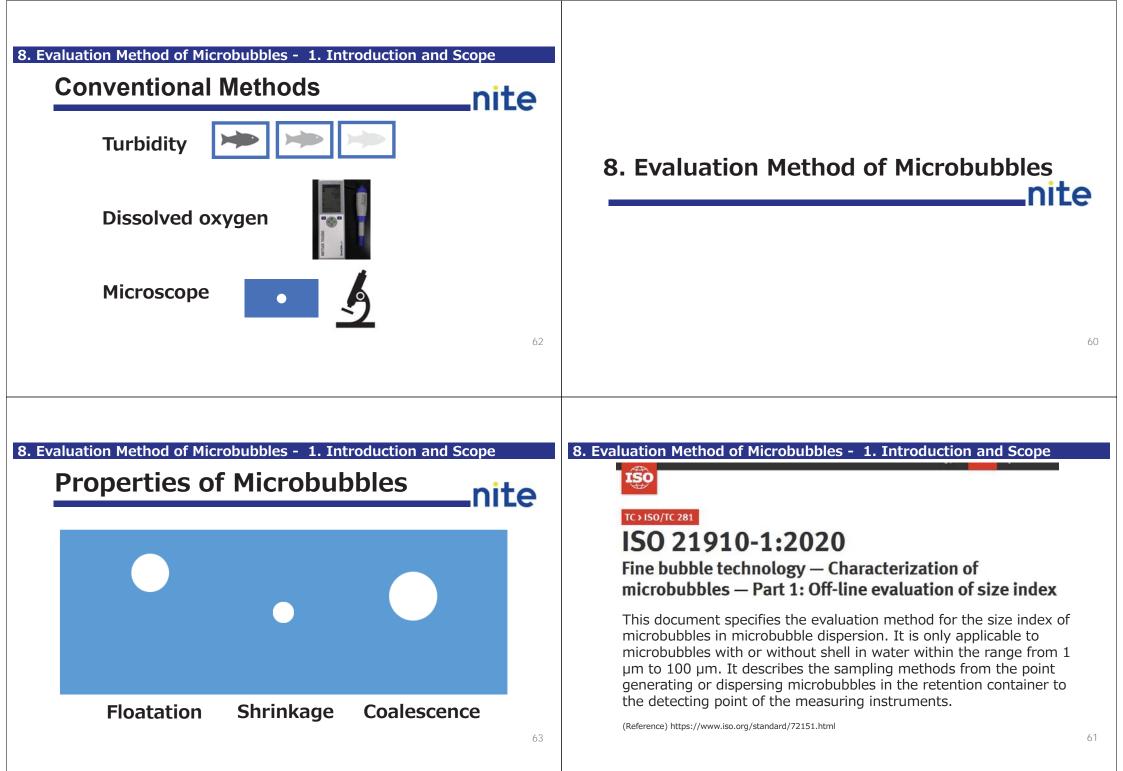
Measurement

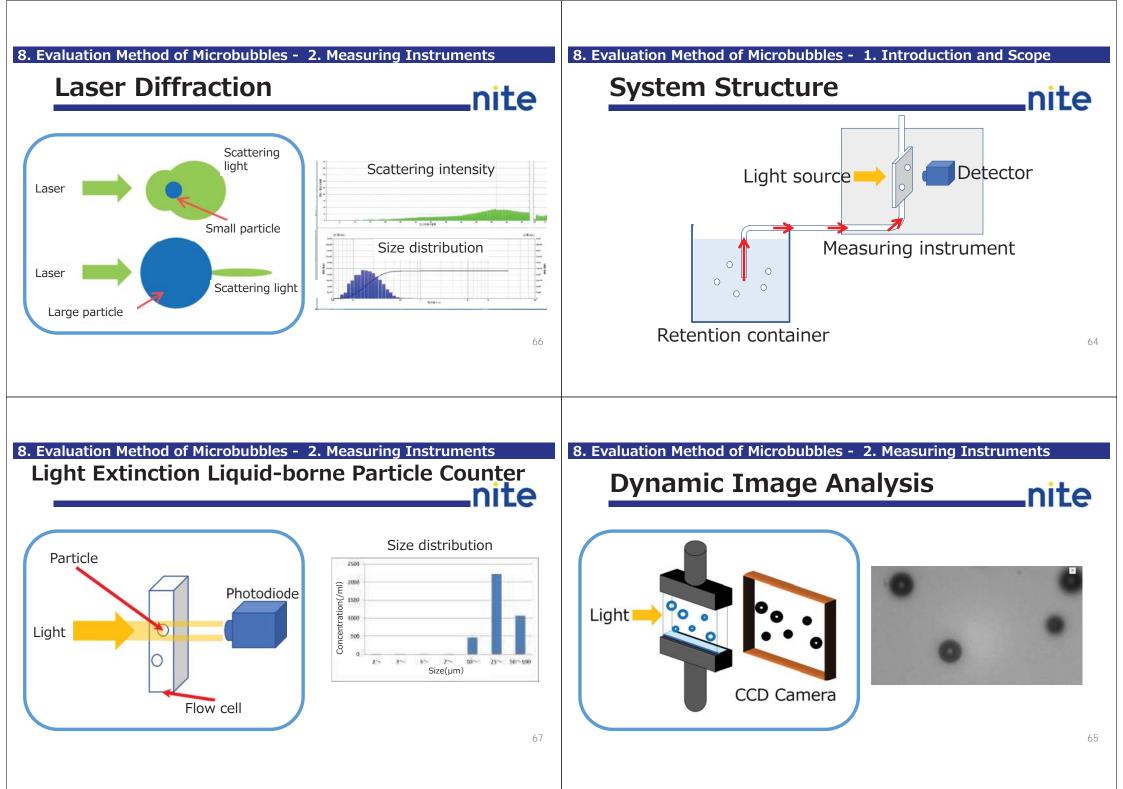
6. Evaluation Method of Ultrafine Bubbles- 3. Analysis

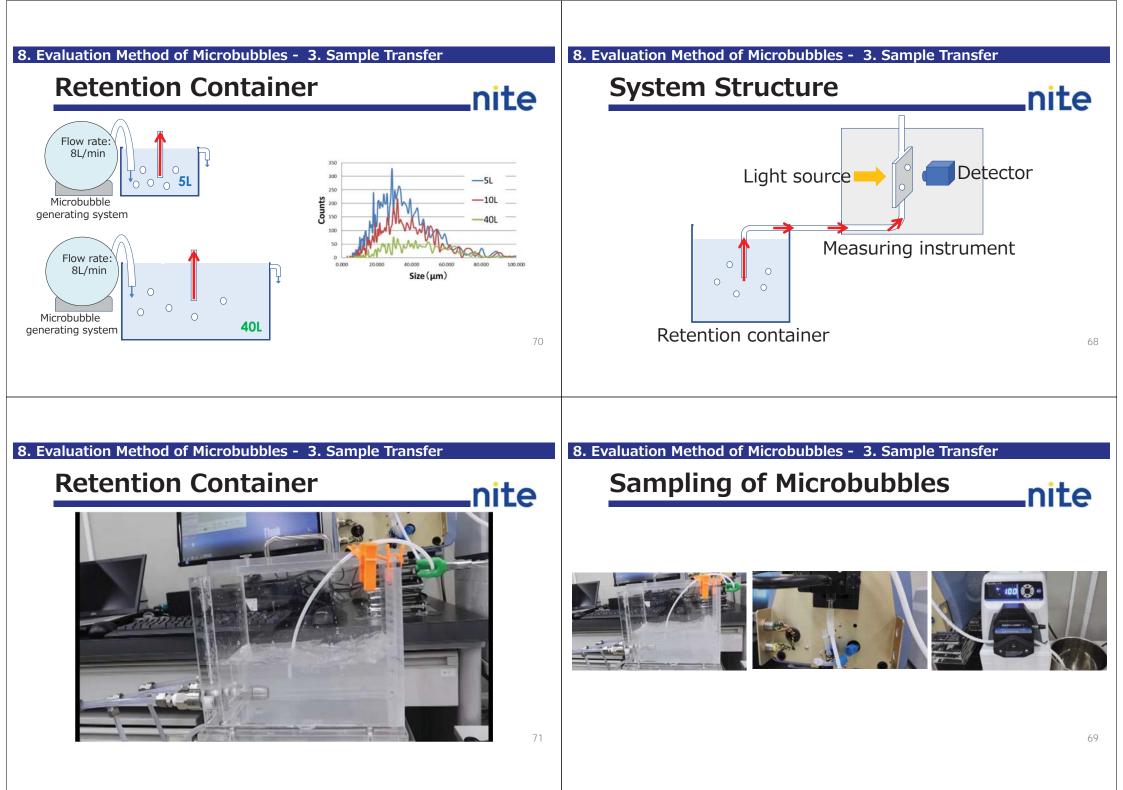
Data Analysis

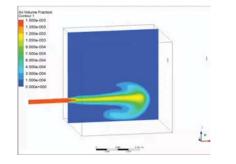

6. Evaluation Method of Ultrafine Bubbles- 3. Analysis

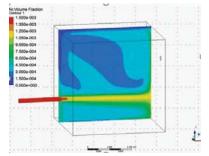
HEATER OF 6 . .


Data Analysis nite 201212 * * * * * * * * * * * * * *


50


nite

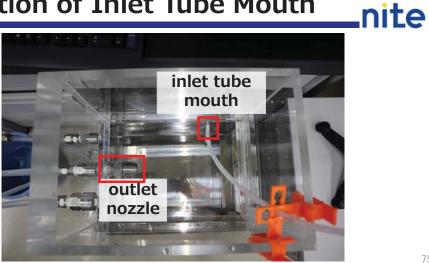




8. Evaluation Method of Microbubbles - 3. Sample Transfer

Retention Container

nite



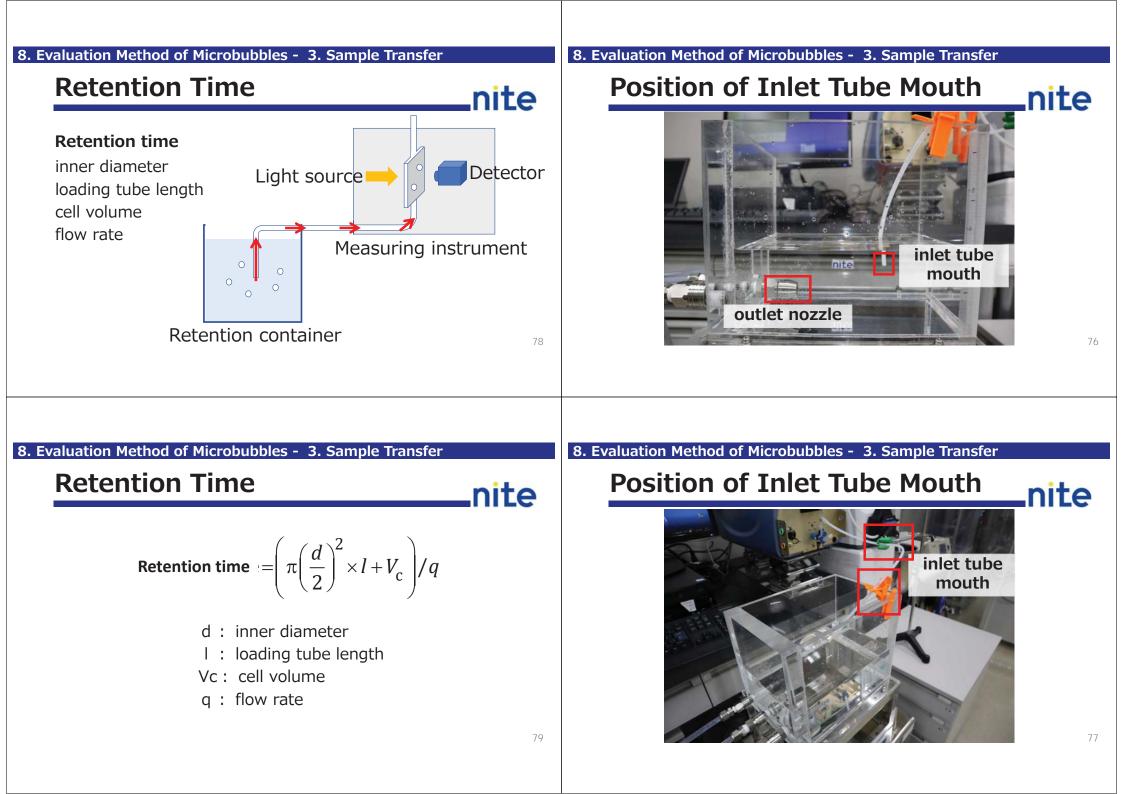
8. Evaluation Method of Microbubbles - 3. Sample Transfer

Position of Inlet Tube Mouth

8. Evaluation Method of Microbubbles - 3. Sample Transfer

Loading Tube

hydrophobic not soft not eluting negatively charged



75

74

72

nite

8 Evaluation Mothed of Microbubbles 4 Measurement System	8. Evaluation Method of Microbubbles - 3. Sample Transfer
8. Evaluation Method of Microbubbles - 4. Measurement System Laser Diffraction nite	Reynolds Number nite
<image/>	Reynolds number $= \frac{V \times d}{v}$ V : flow velocity d : inner diameter v : kinetic viscosityImage: Laminar Re \le 2300Image: V : flow velocity d : inner diameter v : kinetic viscosityImage: Laminar Re \ge 2300Image: V : flow velocity d : inner diameter v : kinetic viscosity
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><image/><image/><image/><image/><image/><image/><image/></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>

<u>"Role of inter-laboratory comparison"</u> 0.5 h (Prof. OSHITA &Dr.TANAKA)

Reliable conformity based on inter-laboratory comparison will be introduced ABSTRACT

In order to guarantee the confidence of evaluation, related measurement method, procedure, environment and personal competence must be sound. The typical evaluations currently of interest for fine bubble technology are fine bubble characteristics and fine bubble enhanced performances of applied fine bubble technology and its products. Evaluation of fine bubble characteristics, being typically size and number concentration, is still under evolving and needs to proceed to have objective evidence for the equivalence of measurement results. Similarly, the parameters measuring the performance must have equivalence, based on the deliberate choice of the parameter representing the performance.

Since different measurements on identical object should show equivalence, the practical evidences for the equivalence are supported by the results of comparison. With some examples, the presentation will show current status of process and result of inter laboratory comparison. It covers measurement on fine bubble characteristics of ultrafine bubble water and fine bubble-enabled enhancement of germination of barley seed. From the examples, participant will be aware of the current state of inter-laboratory and its importance. A proposal for another inter-laboratory comparison for the fine bubble characteristic in APEC area will be presented

Reference

ISO 20480-1:2017

Fine bubble technology — General principles for usage and measurement of fine bubbles — Part 1: Terminology

ISO 20480-2:2018

Fine bubble technology — General principles for usage and measurement of fine bubbles

- Part 2: Categorization of the attributes of fine bubbles

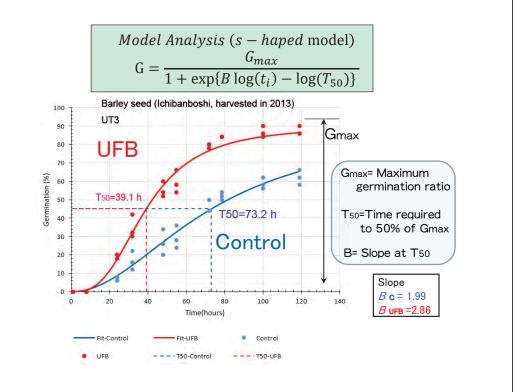
ISO 20298-1:2018 Fine bubble technology — Sampling and sample preparation for measurement — Part 1: Ultrafine bubble dispersion in water

ISO 21255:2018

Fine bubble technology — Storage and transportation of ultrafine bubble dispersion in water

84


ISO 21910-1:2020 Fine bubble technology — Characterization of microbubbles — Part 1: Off-line evaluation of size index


APEC Capacity Building on Testing and Conformity Assessment of Fine Bubble Technologies for use in Agro-/Aqua-Culture and Water Treatment in the APEC Region 19th & 21st January 2021 1st Workshop, Virtual

Examples of inter-laboratory tests between Vietnam, Indonesia, Hawaii (USA) and Japan

Seiichi OSHITA,

Project Professor Research Center for Food Safety Graduate School of Agricultural and Life Sciences, The University of Tokyo

Contents

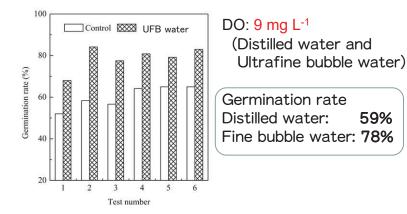
- > What we found as an effect of UFB on seed germination
- >Germination test in Hanoi ((Viet Nam) Bogor (Indonesia), Hawaii (USA) and Chiang Mai (Thailand)
 - ✓ Preparation before visiting
 - \checkmark Results in each country
 - Conclusions

Inter-laboratory collaborative tests

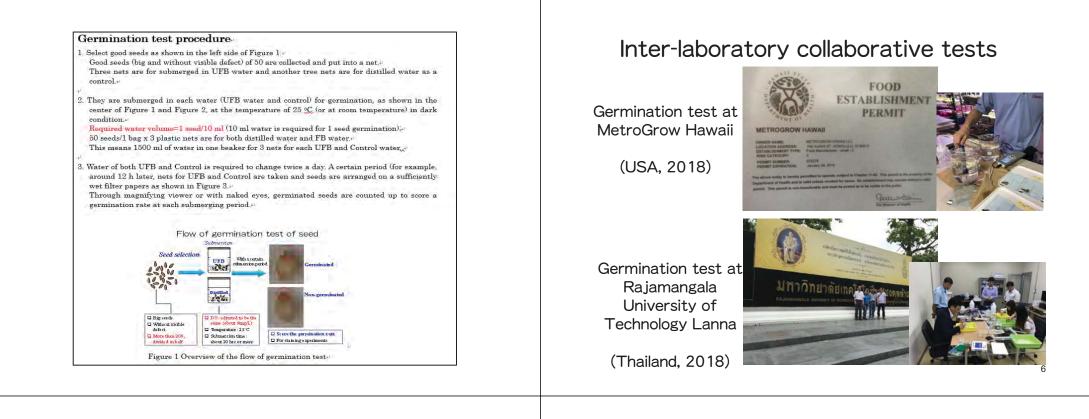
Germination test at Hanoi University of Science

(Vietnam, 2017)

Germination test at **Bogor Agricultural** University


(Indonesia, 2017)

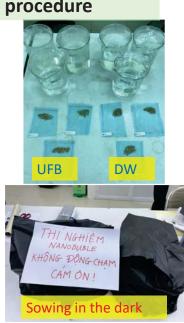
5


Promotion of barley seed germination

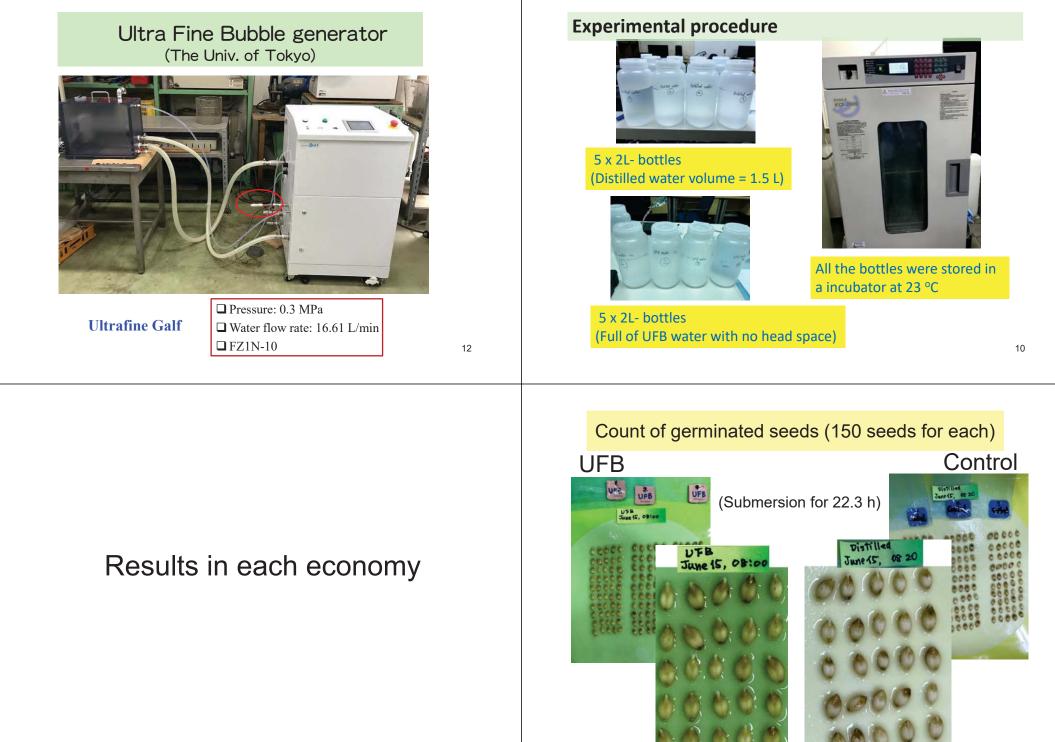
at the same DO (25°C, 20h)


S. Liu et al. (2013), Chemical Engineering Science

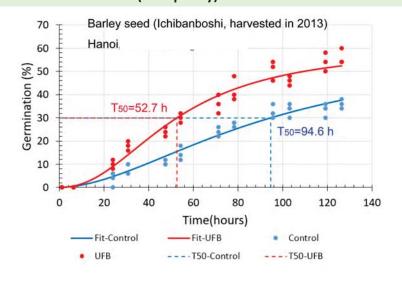
59%



Experimental procedure



Time: June 05 18:50 (0 h)



9

Preparation before visiting

Promotion of germination – Hanoi Seeds harvested in 2013 (low quality)

Germination test in Hanoi

June 4 to 9, 2017

Faculty of Chemistry at University of Science, Viet Nam Naional University

Counterpart

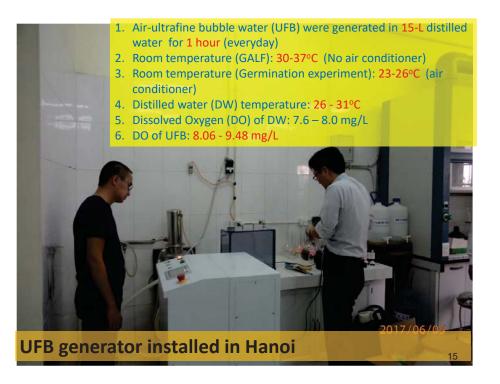
Dr. Thanh Son Le, Dean of Faculty of Chemistry

Dr. Quang Trung Pham

Visitor

S. Oshita, D. Q. Thuyet (The Univ. of Tokyo) S. Maeda (IDEC Corporation)

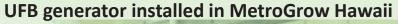
Germination test in Bogor (Indonesia) July 4 to 10, 2017


Dept. of Mechanical and Biosystem Engineering, Faculty of Agricultural Technology, Bogor Agricultural University

Counterpart Dr. Y Aris Purwanto

Visitor

S. Oshita, D. Q. Thuyet (The Univ. of Tokyo) Y. Kawagoe (Nihon University) S. Maeda (IDEC Corporation)



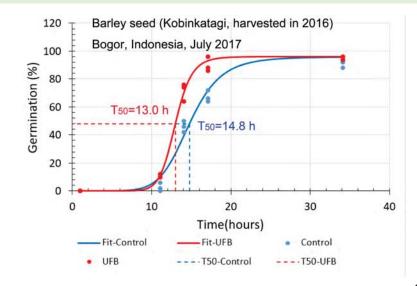
Germination test in Hawaii (USA) December 10 to 13, 2018

MetroGrow Hawaii Vertical farm using aeroponics and hydroponics

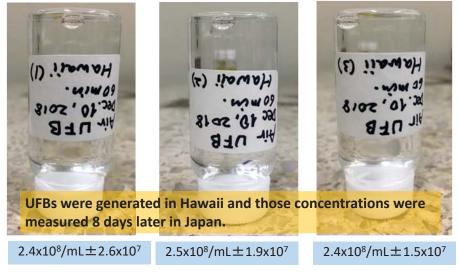
Counterpart Dr. Kerry Kakazu

Visitor S. Oshita (The Univ. of Tokyo) Leo Funaki (IDEC CORP.)

UFB generator installed in Bogor


1. Air-ultrafine bubble water (UFB) were generated in 15-L distilled water for 1 hour (15:45 – 16:45) 2. Room temperature: 26°C (Air conditioner setting: 17°C)

3. Distilled water (DW) temperature: 26°C 4. Dissolved Oxygen (DO) of DW: 7.6 mg/L 5. DO of UFB: 10.77 mg/L



Promotion of germination – Bogor

Seeds harvested in 2016 (high quality)

21

UFB was generated on December 10, 2018 at MetroGrow Hawaii and sampled on Dec. 11 in glass bottles with pipettes according to the regulation of ISO/TC281 with getting the cooperation of Dr. Kerry Kakazu. After 1 day of sampling, air bubble was appeared.

24

25

Germination test in Chiang Mai (Thailand) June 13 to 18, 2018

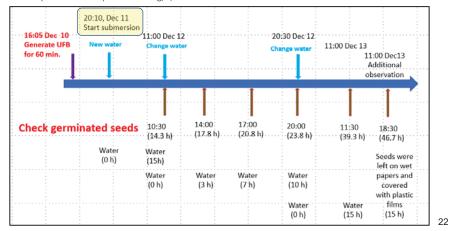
Research Laboratory of Ultra-Fine Bubble for Advanced Technology, Rajamangala University of Technology Lanna

Counterpart

Asst. Prof. Vishnu Thonglek Dr. Kiyoshi Yoshikawa (Research Adviser to the President of Rajamangala University)

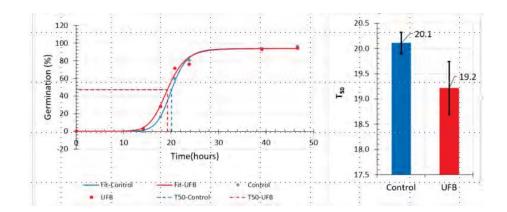
Visitor

S. Oshita (The Univ. of Tokyo) S. Maeda (IDEC Corporation)


UFB water was generated on June 5th and transported to Chian Mai by air, then used for germination test on June 14th to 15th.

Experimental procedure (at MetroGrow Hawaii) getting the cooperation of Dr. kerry Kakazu

Air UFB generation


At New site: Dec. 10, 2018, 16:05 to 17:05 (60 min.), Room temp.=27.0oC, Water (26.5 oC→41.0 oC)

After moving to Current site, UFB water was sampled into 4 glass bottles (50 mL) according to ISO Sampled UFB water: DO=10.83 mg/L & 25.5 oC at 18:07 Control (Distilled water): DO=8.99 mg/L, 24.0 oC at 18:30

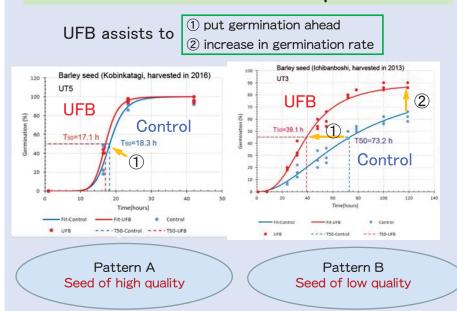
Promotion of germination – Hawaii

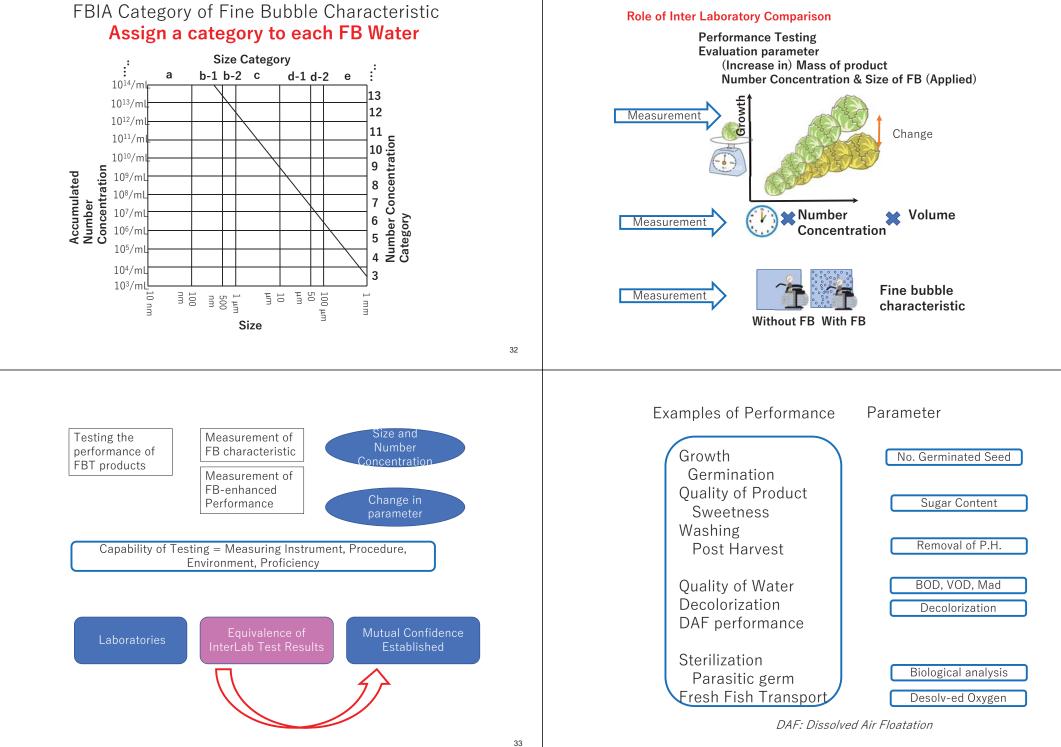
Seeds harvested in 2016 (high quality)

Conclusions

Promotion effect of UFB on barley seed germination was supported by Inter-laboratory collaborative test

Inter-laboratory test has been shown to be useful to assure the repeatability of experimental results


Promotion of barley seed Germination rate (%) ---- Contro germination by UFB water Raw data T₅₀=13.0 h (UFB water) T₅₀=14.8 h (Control) Submerging time (h) 24.5 Autograph Confidence intervals of Tso 24.0 1000 -23.4 23.5 900 95%lower-Cl 800 UFB7k 95%upper-CT 23.0 700 95%lower-UFB 8 600 22.5 500 400 SR 95%upper-UFE Water passed 22.0 -SSR-CT 40 21.5 300 -SSR-UFB through a reverse 21.5 200 20 100 osmosis membrane10 20.5 10 15 T_{sn} (hours) 20.0 19.5 Fit-UFB Control -Fit-Co Control UFB TSO-Control --- TSO-UFB


26

Thank you for your kind attention!

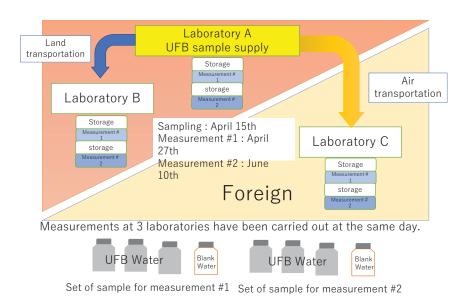
Acknowledgement to financial support by METI International Standardization Program and FBIA, Japan.

Promotion effect in 2 patterns

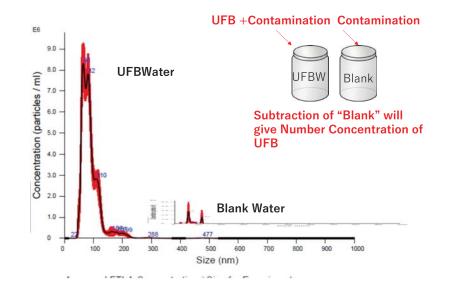
"3. Measurement Comparison for fine bubble technology

Please Jointhe Please Jointon! High concentration UFB water in a bottle is sent to a laboratory of the participant and is applied to its measurement on average size and total number concentration. Identical water is measured too in Japan and these results will be compared and introduced in WS 2. In order to conduct the measurement, special measuring instrument, such as Nanosight of Malvern make, must be available.

The sequence of the technical part of comparison will be finished preferably by end of March 2021. If you are eligible, please inform me of your potential."

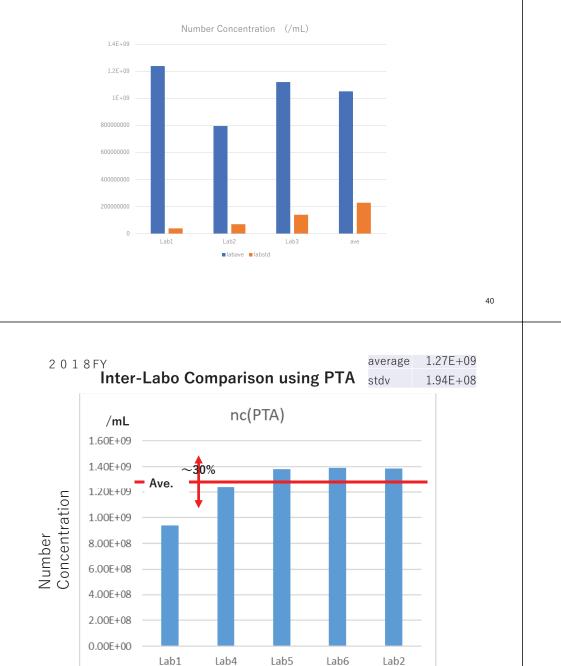

Requirement for participation Measuring Instrument: NanoSight(Malvern), Zeta Views(ParticleMetrix)), SALD(Shimadzu)

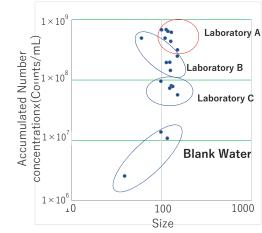
Deionized Water: For Cleaning Glass Bottles: For tentative container, Homogenizing Glove: For cleaning and sampling without contamination


Period: One day 2021 Jan -2021 April: Fixed by coordination of available days.

Please contact M.TANAKA /Project organizer at fbia-apec-ws@fbia.or.jp

Procedure for Voluntary Trilateral Inter-Laboratory Comparison on Number Concentration Index Measurement of UFB



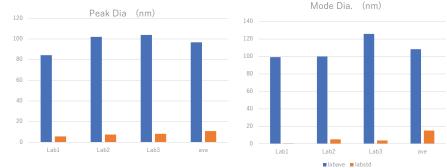


36

2019FY

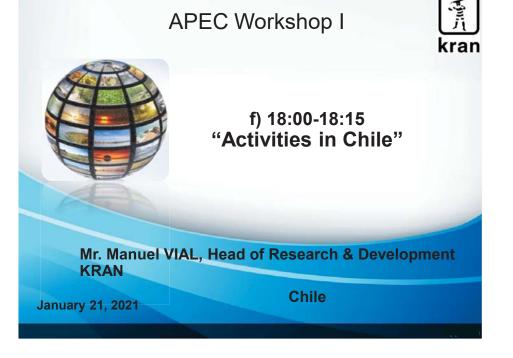
Report of measurement

Results

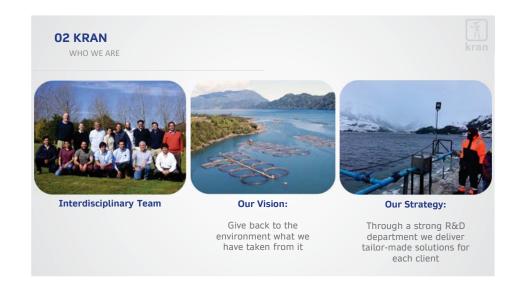

UFB in the sample after 12days from generation could be confirmed by 3 laboratories of Foreign and Japan. Measured size index of 3 laboratories are almost similar.

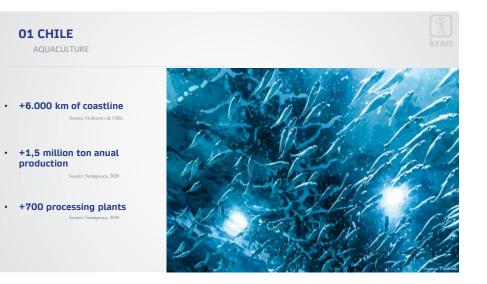
It can be considered that storage and transportation of UFB are possible.

Issues to be considered Cause of difference of number concentration index depending on 3 laboratories should be investigated. water leakage and mili bubbles have been found after the transportation. Optimum container should be surveyed and selected.


2019FY

Result of Inter-Labo Comparison for Designation Dec 19, 2019, Blu:Meas.Result, Orange:Its Std Ave: Average


∎labave ∎labstd



03 SUCCESSFUL CASES

AGRICULTURE

- Promotes plant growth
 Improves plant health
 Efficient use of water

AQUACULTURE

- Seabed purification
- Efficient oxygen transfer
 Improvement animal health

WATER TREATMENT

- Reduction in chemical use -
- Better performanceBetter efficiency in aeration

01 CHILE WATER TREATMENT

+750 million m ³ /year industrial use
+3.000 liquid waste treatment plants
+50% audited plants didn't comply with regulations
Source: INE, 2019

03 SUCCESSFUL CASES

AGRICULTURE

- Project: Oranges post-harvest disinfection
- Goals: Increase the shelf-life of the product
- UFB Properties involved:

Zeta Potential – Radicals Formation – Surface Tension

• Results: 8 weeks increase in shelf-life Chlorine use was no longer necessary

03 SUCCESSFUL CASES

AGRICULTURE

- Project: Lettuce Growth Monitoring
- Goals: Reduce cycle times, increase yield
- UFB Properties involved:

Oxygen Transfer Efficiency - Zeta Potential -Radicals Formation

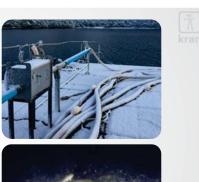
• Results: 10 days cycle time reduced 166% increased yield Pythium sp fungae erradicated

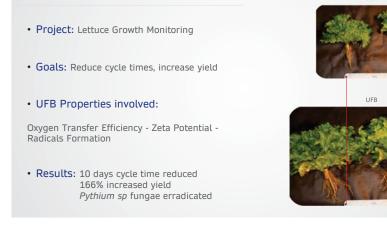
03 SUCCESSFUL CASES

AGRICULTURE

No UFB

03 SUCCESSFUL CASES


AQUACULTURE


- **Project:** FONSA (Healthy Seabeds)
- Goals: Restore de seabed to aerobic condition

• UFB Properties involved:

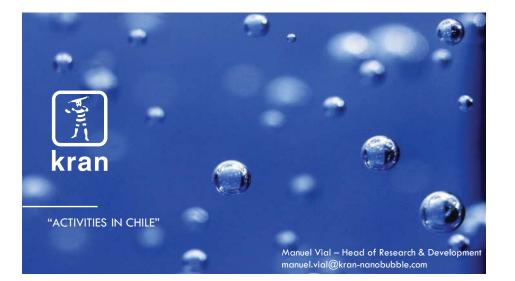
Neutral Buoyancy – Oxygen Transfer Efficiency

 Results: Beggiatoa bacteria was eradicated Sludge decomposition accelerated DO levels increased Biodiversity reactivated

04 FINAL WORDS

03 SUCCESSFUL CASES

AQUACULTURE


- Project: Flow Ice
- **Goals:** Replace peracetic acid to sanitize fresh salmon with an ecofriendly solution
- UFB Properties involved:

Zeta Potential – Radicals Formation – Surface Tension

Results: +735 mV ORP v/s +576 mV ORP
 Increased shelf-life and improved certification

03 SUCCESSFUL CASES

WATER TREATMENT

- Project: DAF
- Goals: Reduce chemicals consumption
- UFB Properties involved:

Size Distribution – Zeta Potential

• Results: 50% decrease in coagulant maintaining efficiency

OVERVIEW

• Fine bubble technology in China

start from the 1970' in metal extraction

First standard

in the 1990' about fine bubble aerator

- Micro/nano Bubble Committee of Chinese Society of Particuology established in 2018
- National Technical Committee on Standardization of Fine Bubble Technology established in 2019 (mirror TC of ISO/TC281)
- FBT has been widely used in many areas including agriculture, aquaculture, water treatment, cleaning, flotation column, chemical industry, ultrasound contrast agent, and etc. now.

January 21, 2021

g)18:15-18:30

APEC Workshop I

Fine Bubble Technology in China -Application and Standardization

> Mr. Zhaojun LI Institute of Process Engineering, Chinese Academy of Sciences

the People's Republic of China

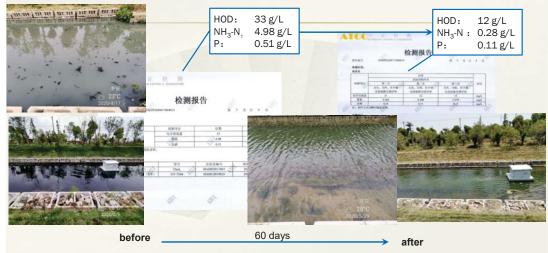
OVERVIEW

CONTENTS

- Overview
- FBT applications
- Standardization of FBT
- Initiatives

FBT APPLICATION – water

Main Reasons for Water Pollution


- Lack of oxygen
- High concentration of pollutants
- Reproduction of anaerobic bacterium
- Heavily polluted bottom mud

OVERVIEW

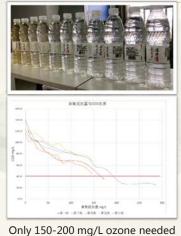
全国微细气泡技术标准化技术委员会成立大会暨2019年年会

FBT APPLICATION – water - urban sewage

FBT APPLICATION - water

With the fast economic growth, more and more attention has been paid to the water pollution problem.

But nowadays the situation is changing rapidly.

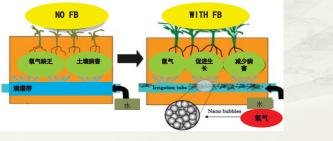

Surface water:

2012 grade I-III: 69%, bad (below V): 10% 2020 grade I-III: 80%, bad (below V): 1%

FBT APPLICATION – water - industry sewage

Papermaking wastewater

FBT APPLICATION – water - urban sewage



2 years It's easy for fine bubbles to improve the quality of the river sediment just because of their size.

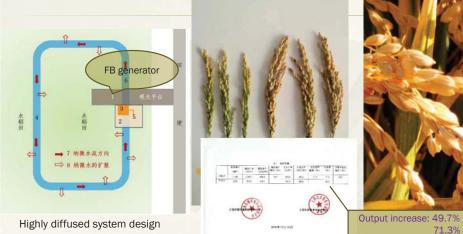
FBT APPLICATION - agriculture

- **Principle:** Transfer oxygen directly to the root of plants by FBs to improve the environment of growth.
- Advantage: Significantly increase the output and improve the nutritional quality of the plants.

FBT APPLICATION – water - industry sewage

pharmaceutical industry

Lincomycin two stages	水质 聚铁混凝后 COD 原水 284 处理后 87 水质 生化出水 COD 原水 620 处理后 80 More effective and much cheaper			デージョン・シーン・シーン・シーン・シーン・シーン・シーン・シーン・シーン・シーン・シー	N N N N N N N N N N N N N N N N N N N	
	生化后水质	organophosphor mg/L	total phosphorus mg/L	-		
fosfomycin	原水处理后	40 V 0	45 V 0.5		A New Constantion of Marchine Public Ger	


Much cheaper than other techniques

salinity: 0.5% 5 months salinity: 0.2% pH: 8.5 :Ha 8.3 试验田编号 试验田编号 /号田 /号田 20.5 59.5 8.7 18.3 0.18 0.53 37.1 8.3 2号田 19.9 0.49 51.3 8.5 2号田 19.3 0.16 36.8 8.2 5号田 20.4 0.51 53.3 8.4 5号田 19.1 0.18 36.2 8.3 6号田 19.3 0.52 56.8 8.6 6号田 18.6 0.18 37.7 8.3 对照 20.1 0.51 52.4 8.6 別照 18.5 0.25 35.5 8.5

FBT APPLICATION - agriculture

Unhusked rice: 6120kg/Ha

FBT APPLICATION - agriculture

Output increase: 49.7% (unhusked rice) 71.3% (rice) Plan: 10000Ha in 2021

FBT APPLICATION - agriculture

Tomato Output 30.3%, Vc 68.1%, Lycopene 52.0%

Cucumber Output 34.3% , Vc 64.6%, Soluble sugar 57.1%

Watermelon Output 69.8% , Vc 48.8%, Soluble sugar 66.0%

FBT APPLICATION - agriculture

Saline-alkaline Land

FBT APPLICATION - aquaculture

4-5 days ' fish hatching

Length quantity Deformity Belly emptying time

Gain 1 kg Rate of water exchange Feeding stuff needed /kg 10%-15% → nearly 0% 8hrs → 3hrs more healthy

7mm ~8mm 30 % ~35% increase

14 months→12 months(cost 15% \downarrow) 100%~150%/month →nearly 0% 1.7kg → 1.2kg (cost 30% \downarrow)

NO antibiotic NO hormone More delicious

FBT APPLICATION - agriculture

FB generator for soil sterilizing

FB generator for hydroponics

FB generator for bean germination

Standardization of FBT


- FBT is an excellent technique in many fields, whether it is used in water treatment or in agro-/aquaculture, It is all the result of fine bubble effects in water. It seems that FBT can be used anywhere with water.
- But, in practical, the performances of FB generators varies widely although they are all called FB
 generators. To achieve better market order and reach conformity, standardization is the best solution.
- According to the development of FBT, besides some issued standards relating to generators, we are now investigating other standards:

Generator(issued)	dispersed aerator, rotary disc aerator		
	high speed aeration centrifugal blower, jet aerator		
	blast submerged aerator, rotary brush aerator		
Measurement	Microbubble size analysis- Submerged image analysis methods		
Characterization of generator	Measurement of oxygen mass transfer in clean water		
Application	Engineering design and construction for FB application in saline-alkali soil		

FBT APPLICATION - aquaculture

Jelawat (mad barb) 皇帝鱼,苏丹鱼

- o We have to take food management and agricultural development seriously," the President said during the Opening of the 2021 National Working Meeting of Agricultural Development with the theme "Strengthening the Role of Agricultural Sector in Supporting Economic Growth amid the COVID-19 Pandemic" (Monday, 11/01/2021)
- o President stressed that agricultural development for agricultural commodities such as soybeans, corn, sugar, and garlic, all of which are currently still being imported, is of great importance. "We have not imported rice for almost two years. I want to see what conditions are on the ground, whether we'll consistently do it for the coming years," he said, while calling for an agricultural development scheme to address the matter (importing commodities).

Thank you for your attention!

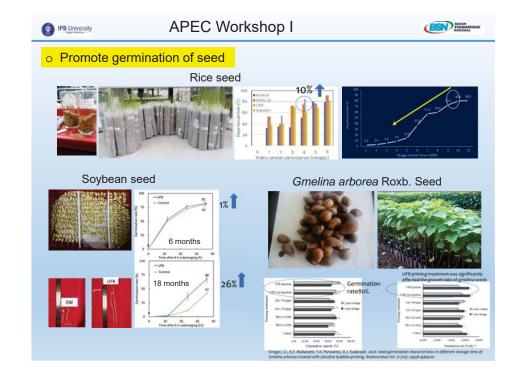
Zhaojun LI Institute of Process Engineering, Chinese Academy of Sciences zili@ipe.ac.cn 86-10-62521688 86-13520079628

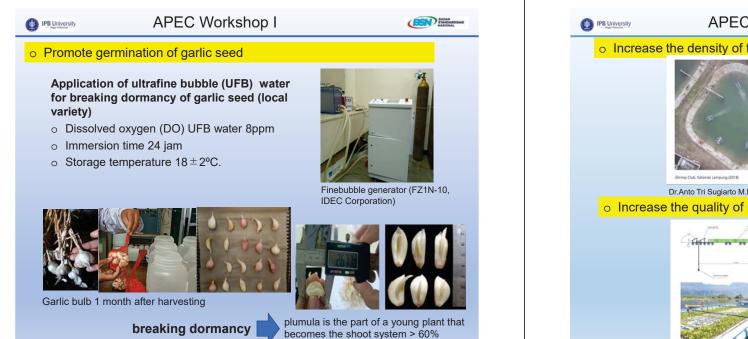
IPB University

APEC Workshop I

• Promote germination of garlic seed

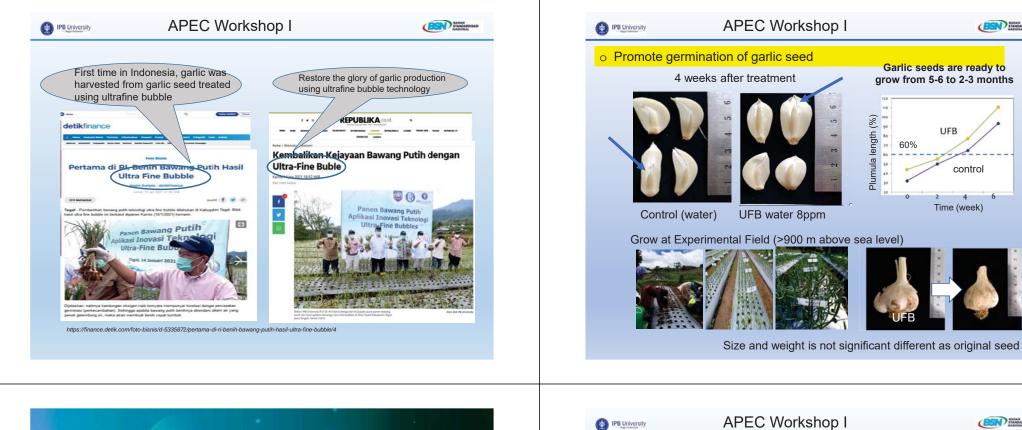
Garlic bulbs need to be stored for 5-6 months before replanting due to dormancy




BSN STANDARDISA

UFBs water and H_2O_2 solution both stimulated **seed** germination speed and had a similar pattern on the effect of gene expression profiles on barley seed sprouts *Liu, S, Oshita S, Thuyet DQ, Saito M, Yoshimoto T. 2018. Langmuir 34, 39: 11878–11885*

Apply finebubble technology for breaking dormancy and promoting germination of garlic seed



KLHK PROJECT (2018)

Ministry of Environment and Forestry

"Ultrafine micro/nanobubble + Wetland Apung + Solar Energy)

BSN STANDARD

BSN STANDARD

control

4

Harvesting (January 14, 2021)

I. Introduction on KS and KFBIA

APEC Workshop I

i) 18:45-19:00 Activities in Korea -Introduction of fine bubble applications for the agriculture and the aquaculture

Chang Gyun Kim, Inha University

Korea

January 21, 2021

INHA UNIVERSITY

Current status of KS(Korea industrial Standard) on Fine bubble Technology

> 1st Grieffy published ('15.12.29)

- "Terminology of finebubble techonology(KSL 1628)"
- Establishment of KFBIA (Korea Fine Bubble Industry Association)
 KS and official certificate related business (2016. 9. 16~)
- Establishment of National Mirror Committee on Fine bubble Technology
 Discussion and decision making on KS and IS issues (2019.4.25 ~)

CONTENTS

- I Introduction on KS and KFBIA
- **II** Status in agricultural application
- **III** Case studies

IV Summary