

Develop Air Connectivity in the APEC Region

EXECUTIVE SUMMARY

APEC Project: TWG 01 2014A

Produced by

International Air Transport Association

Head Office Canada: 800 Place Victoria, PO Box 113 Montreal H4Z 1M1, Quebec, Canada

www.iata.org/consulting

For

Asia-Pacific Economic Cooperation Secretariat 35 Heng Mui Keng Terrace Singapore 119616

Tel: (65) 68919 600 Fax: (65) 68919 690 Email: <u>info@apec.org</u> Website: <u>www.apec.org</u>

© 2016 APEC Secretariat

APEC#216-TO-01.2

Table of Contents

Table of	f Figures	4
Glossar	y	5
List of A	Abbreviations	5
1. Exc	ecutive summary	10
1.1	Introduction	10
1.2	New route recommendations for APEC economies	12
1.3	Future developments of air connectivity in APEC	13
1.4	General recommendations to improve air connectivity in APEC	13
Append	lix A: Methodology	15
Data fu	eling the model	15
Gap and	alysis	16
Induction	วท	18
Connec	ting potential	19
Deman	d growth	19
Other		20
Final ro	ute forecast	20
Append	lix B: Overview of IATA and IATA Consulting	21
IATA		21
IATA Co	onsulting	21

Table of Figures

Figure 1: Summary of air connectivity in APEC	11
Figure 2: Potential new routes recommended for the APEC region	12
Figure 3: Process used to complete analytical work	15
Figure 4: Funnel approach used to conduct analysis	16
Figure 5: Example of the various assumptions being applied to determine the potential for new air	
service	20

Glossary

The following section presents a list of commonly used expressions and abbreviations found within the report.

Connecting Potential – Common rates of passengers connecting beyond/behind when travelling through a hub to/from a particular region.

Induction/Stimulation – Initial spike in passenger demand when a new non-stop service is offered due to better accessibility, shorter travel time, lower cost, etc.

Load Factor – The ratio of seats sold to available seats on a particular flight

Direct/Non-stop services – Refers to an air route that is flown between two airports without intermediate landing stops

List of Abbreviations

PDEW – Passenger daily each way (passenger demand in each direction between a select origin and destination).

SDEW – Seats daily each way (number of seats offered in each direction on a non-stop or one-stop flight segment).

OD – Origin and destination.

Airport Codes

AAQ – Anapa, RUS	ATL – Atlanta, US	BNA – Nashville, US
ACA – Acapulco, MEX	AUS – Austin, US	BNE – Brisbane, AUS
ADL – Adelaide, AUS	AYP – Ayacucho, PE	BOS – Boston, US
AER – Sochi, RUS	BCD – Negros Occidental,	BPN – Balikpapan, INA
AGU – Aguascalientes,	PH	BUR – Burbank, US
MEX	BDJ – Banjarmasin, INA	BWN – Bandar Seri
AKJ – Asahikawa, JPN	BHE – Blenheim, NZ	Begawan, BD
AKL – Auckland, NZ	BJX – Silao, MEX	BXU – Butuan, PH
ANF – Antofagasta, CHL	BKI – Kota Kinabalu, MAS	CAN – Guangzhou, PRC
AOR – Alor Setar, MAS	BKK – Bangkok, THA	CBO – Cotabato, PH
AQP – Arequipa, CHL	BLI – Bellingham, US	CCP – Concepción, CHL
ARH – Arkhangelsk, RUS	BMV – Buon Ma Thuot,	CEB – Cebu, PH
ASF – Astrakhan, RUS	VN	CEI – Chiang Rai, THA

CEK – Chelyabinsk, RUS	DEN – Denver, US	HAK – Haikou, PRC
CEN – Ciudad Obregón,	DFW – Dallas, US	HAN – Ha Noi, VN
MEX	DGO – Durango, MEX	HGH – Hangzhou, PRC
CGK – Jakarta, INA	DGT – Dumaguete, PH	HKG – Hong Kong, China,
CGO – Zhengzhou, PRC	DJB – Jambi City, INA	НКС
CGQ – Changchun, PRC	DLC – Dalian, PRC	HKT – Phuket, THA
CGY – Cagayan de Oro	DLI – Da Lat, VN	HND – Tokyo, JPN
and Iligan, PH	DME – Domodedovo,	HNL – Honolulu, US
CHC – Christchurch, NZ	RUS	HRB – Harbin, PRC
CJA – Cajamarca, PE	DMK – Bangkok, THA	HUI – Hue, VN
CJC – Calama, CHL	DPS – Bali, INA	HUZ – Huizhou, PRC
CJJ – Cheongwon-gu,	DRW – Darwin, AUS	IAD – Washington, US
ROK	DTW – Detroit, US	IAH – Houston, US
CJU – Jeju, ROK	DUD – Dunedin, NZ	ICN – Seoul, ROK
CKG – Chongqing, PRC	DVO – Davao City, PH	ILO – Ilo, PE
CLT – Charlotte, US	EAT – Douglas County,	IQQ – Iquique, CHL
CME – Ciudad del	US	IQT – Iquitos, PE
Carmen, MEX	EWR – Newark, US	ISG – Ishigaki, JPN
CNS – Cairns, AUS	EZE – Buenos Aires, ARG	ITM – Osaka, JPN
CNX – Chiang Mai, THA	FAT – Fresno, US	IWK – Iwakuni, JPN
CSX – Changsha, PRC	FLL – Fort Lauderdale, US	JFK – New York, US
CTS – Hokkaido, JPN	FOC – Fuzhou, PRC	JHB – Johor, MAS
CTU – Chengdu, PRC	FSZ – Shizuoka, JPN	JJN – Quanzhou, PRC
CUN – Cancun, MEX	FUK – Fukuoka, JPN	JNZ – Jinzhou, PRC
CUZ – Cusco, PE	GDL – Guadalajara, MEX	JOG – Yogyakarta, INA
CVG – Cincinnati, US	GEG – Spokane, US	JUL – Juliaca, PE
CXR – Nha Trang, VN	GMP – Seoul, ROK	KBR – Kota Bharu, MAS
DAD – Da Nang, VN	GUM – Tamuning and	KBV – Krabi, THA
DAL – Dallas, US	Barrigada, GUM	KCH – Kuching, MAS
DCA – Washington, US	GYS – Guangyuan, PRC	KGD – Kaliningrad, RUS

KHH – Kaohsiung, CT	MCO – Orlando, US	OKA – Naha, JPN
KHN – Nanchang, PRC	MDW – Chicago, US	OOL – Gold Coast, AUS
KIX – Osaka, JPN	MDZ – Mendoza, ARG	ORD – Chicago, US
KKE – Kerikeri, NZ	MEL – Melbourne, AUS	OVB – Novosibirsk, RUS
KLO – Kalibo, PH	MEX – Mexico City, MEX	OZC – Ozamiz, PH
KMG – Kunming, PRC	MFM – Macau, MAC	PDG – Sumatra, INA
KNH – Kinmen, PRC	MIA – Miami, US	PEK – Beijing, PRC
KNO – Kuala Namu, INA	MLM – Alvaro Obregon,	PEN – Penang, MAS
KOJ – Kirishima, JPN	Michoacan, MEX	PER – Perth, AUS
KRR – Krasnodar, RUS	MNL – Manilla, PH	PHL – Philadelphia, US
KUF – Samara, RUS	MRY – Monterey, US	PHX – Phoenix, US
KUL – Kuala Lumpur,	MSP – Minneapolis–Saint	PIU – Piura, PE
MAS	Paul, US	PLM – Palembang, INA
KWL – Guilin, PRC	MTT – Cosoleacaque,	PLW – Palu, INA
KZN – Tatarstan, RUS	MEX	PMC – Puerto Montt,
LAS – Las Vegas, US	MTY – Apodaca, MEX	CHL
LAX – Los Angeles, US	MZG – Magong City, CT	PMR – Palmerston North
LED – Saint Petersburg,	NBC – Nizhnekamsk, RUS	City, NZ
RUS	NGB – Ningbo, PRC	PNK – Pontianak, INA
SVX – Yekaterinburg, RUS	NGO – Nagoya, JPN	POM – Port Moresby,
LGA – NY–La Guardia, US	NKG – Nanjing, PRC	PNG
LGK – Padang Matsirat,	NKM – Nagoya, JPN	PPQ – Paraparaumu, NZ
Langkawi, MAS	NNG – Nanning, PRC	PQC – Phu Quoc, VN
LHW – Lanzhou, PRC		
LIM – Lima, PE	NPE – Napier, NZ	PSP – Palm Springs, US
	NPE – Napier, NZ NPL – New Plymouth, NZ	PSP – Palm Springs, US PUS – Busan, ROK
LOP – Lombok, INA	•	
LOP – Lombok, INA LPF – Liupanshui, PRC	NPL – New Plymouth, NZ	PUS – Busan, ROK
	NPL – New Plymouth, NZ NRT – Tokyo, JPN	PUS – Busan, ROK PVG – Shanghai, PRC
LPF – Liupanshui, PRC	NPL – New Plymouth, NZ NRT – Tokyo, JPN NSN – Nelson, NZ	PUS – Busan, ROK PVG – Shanghai, PRC PVR – Puerto Vallarta,
LPF – Liupanshui, PRC LPT – Lampang, THA	NPL – New Plymouth, NZ NRT – Tokyo, JPN NSN – Nelson, NZ NTG – Nantong, PRC	PUS – Busan, ROK PVG – Shanghai, PRC PVR – Puerto Vallarta, MEX

RDU – Raleigh, Durham,	SOC – Solo/Surakarta,	TNA – Jinan, PRC
US	INA	TPE – Taipei, CT
REP – Siem Reap, KHM	SPN – Saipan, US	TPP – Tarapoto, PE
REX – Reynosa, US	SRG – Semarang, INA	TRC – Torreon, MEX
RGN – Mingaladon, MMR	STL – St. Louis, US	TRU – Trujillo, PE
RNO – Reno, US	STW – Stavropol Krai,	TSA – Songshan, CT
ROC – Rochester, US	RUS	TSN – Tianjin, PRC
ROT – Rotokawa, NZ	SUB – Surabaya, INA	TTJ – Tottori, JPN
ROV – Rostov-on-Don,	SVO – Moscow, RUS	TXG – Taichung, CT
RUS	SVX – Koltsovo, RUS	TYN – Taiyuan, PRC
RSU – Yeosu, ROK	SWA – Jieyang Chaoshan,	UFA – Ufa, RUS
RTW – Saratov City, RUS	PRC	UIH – Qui Nhon, VN
RXS – Roxas City, PH	SYD – Sydney, AUS	UKB – Kobe, JPN
SAN – San Diego, US	SYO – Sakata, JPN	UPG – Makassar, INA
SCL- Santiago, CHL	SYX – Sanya, PRC	URC – Urumqi, PRC
SEA – Seattle, US	SZX – Shenzhen, PRC	USM – Koh Samui, THA
SFO – San Francisco, US	TAC – Tacloban, PH	VCL – Chu Lai, VN
SGN – Ho Chi Minh, VN	TAM – Tampico, MEX	VDH – Dong Hoi, VN
SHA – Shanghai, PRC	TAO – Qingdao, PRC	VER – Veracruz, MEX
SHE – Shenyang, PRC	TAV – Tau, ASM	VII – Vinh, VN
SIN – Singapore, SGP	TBP – Tumbes, PE	VKO – Moscow, RUS
SIP – Simferopol, UKR	TDX – Trat, THA	VOZ – Voronezh, RUS
SJC – San Jose, US	TGG – Kuala Terengganu,	VSA – Villahermosa, MEX
SJD – San Jose del Cabo,	MSA	VVO – Vladivostok, RUS
MEX	TGZ – Chiapa de Corzo,	WAG – Whanganui, NZ
SLC – Salt Lake City, US	MEX	WEH – Weihai, PRC
SLP – San Luis Potosi,	TIJ – Tijuana, MEX	WLG – Wellington, NZ
MEX	TKG – Bandar Lampung,	WNZ – Wenzhou, PRC
SMF – Sacramento, US	INA	WRE – Whangarei city,
SNA – Santa Ana, US	TLC – Toluca, MEX	NZ

WUH – Wuhan, PRC YQM – Moncton, CDA YYC – Calgary, CDA WUX - Wuxi, PRC YQR – Regina, CDA YYJ – Victoria, CDA XIY - Xi'an, PRC YSJ – Saint John, CDA YYZ – Toronto, CDA XMN – Xiamen, PRC YTS – Timmins, CDA YZP - Sandspit, CDA YUL - Montreal, CDA YEG – Edmonton, CDA YZR – Sarnia, CDA YGJ - Yonago, PRC YVR – Vancouver, CDA ZAL – Valdivia, CHL

YHZ – Halifax, CDA YWG – Winnipeg, CDA ZCL – Calera de Victor YKA – Kamloops, CDA YXC – Cranbrook, CDA Rosales, MEX

YLW – Kelowna, CDA YXS – Prince George, CDA ZQN – Queenstown, NZ

YNJ – Yanji, PRC YXT – Terrace-Kitimat, ZUH – Zhuhai, PRC

YOW – Ottawa, CDA CDA

YPR – Prince Rupert, CDA YYB – North Bay, CDA

1 Executive summary

1.1 Introduction

Improved air connectivity can be a catalyst for the growth of travel and trade, ultimately enhancing economic and social development and creating jobs, especially for women, young people and in rural areas.

This important research project was proposed in 2014 by Thailand, and co-sponsored by Australia; Indonesia; Malaysia; Peru; the Philippines; and Chinese Taipei with the aim to develop air connectivity in the APEC Region and in turn stimulate a more efficient flow of goods, services, capital and people.

The project was approved in December 2014, and in May 2015 IATA Consulting was selected to complete this project. Between May 2015 and July 2016, a market demand assessment and analysis of true Origin/Destination air traffic demand between the APEC economies was conducted, that was calibrated with existing flights, seat capacity and flight schedules, using IATA's travel intelligence software. The results were aligned with an analysis of new aircraft with increased flying range.

To achieve air connectivity with non-stop flights between every APEC economy, there are 210 economy pairs possible of which:

- 131 (62%) are connected with non-stop flights
- 79 (38%) are NOT connected with non-stop flights

Of the 79 economy pairs that are currently not connected with non-stop flights:

- 47 (22%) cannot be connected due to aircraft technology limitations
- 6 (3%) can be connected based on the market demand recommendations of this project

This executive summary report is complemented by a consolidated report, and 21 customized APEC economy reports, that provide greater details and make market demand driven recommendations for new non-stop flights, hubs, and improved flight schedule connection times. This can help airlines and regulators make faster decisions to improve air connectivity across the APEC Region.

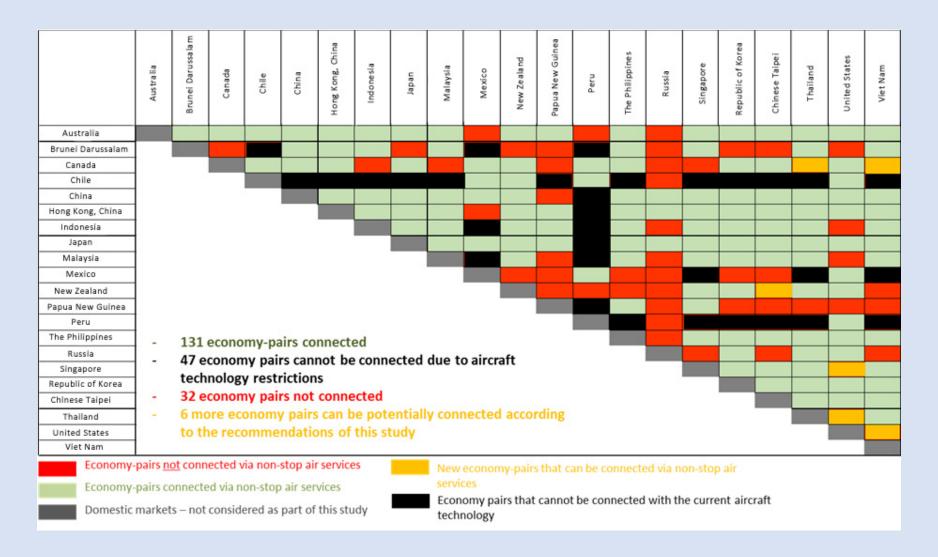


Figure 1: Summary of air connectivity in APEC

1.2 New route recommendations for APEC economies

Based on a market demand assessment that included an analysis of over 18,500 routes, recommendations were made for new non-stop flights, hubs, and improved flight schedule connection times that can help airlines and regulators make faster decisions to improve air connectivity across the APEC Region.

Figure 2: Potential new routes recommended for the APEC region

1.3 Future developments of air connectivity in APEC

One of the greatest challenges in connecting APEC economies by air is the physical distance between the economies on the two sides of the Pacific Rim. At present, the majority of trans-pacific traffic is routed through hubs in North Asia such as HKG, HND/NRT and ICN, and hubs on the West Coast in Canada and the United States such as LAX, SFO, SEA and YVR. These hubs are home to some of the world largest airlines and run at the optimal efficiency to facilitate air connectivity.

Aircraft technology had improved over the years and the latest aircraft in the market such as the Airbus A350 and Boeing B787 are capable of flying ultra-long-haul routes up to 14,000km¹. It is therefore expected that more trans-pacific direct routes will be opened. However, even with the latest aircraft technology, there are still 47 APEC economy pairs unable to connect due to the physical distance. It is foreseen that in the future, APEC will still need to rely on the major hubs to bridge the economies that cannot be connected directly.

1.4 General recommendations to improve air connectivity in APEC

Air connectivity is usually assessed from the perspective of an airline, or a destination, and this is a unique assessment because it is from the perspective of an economic region.

This project focused on market demand and it is recognized that there are many other components that need to be taken into consideration before a new route is implemented including government perspectives, and airlines perspectives including financial modeling and many other inputs.

In addition to the recommended new routes, and schedule improvements, IATA recommends the following:

- Strengthening tourism cooperation on air connectivity among the APEC economies, as instructed by APEC Tourism Ministers in the Lima Declaration of the last TMM9, since increased international and domestic connectivity can help regionally distribute the social and economic benefits of tourism
- Engage with APEC working groups including the Tourism Working Group (TWG), the Transport
 Working Group (TPTWG) and the Business Mobility Group (BMG)"in order to further liberalize
 the air services market to other APEC economies allowing the fullest access to the major
 airports in the economy
- Start engaging with airlines early and provide the fullest support to the airlines involved because new air route development is usually a lengthy process as it involves a significant amount of investments from the airline to open a new route

APEC Project TWG 01 2014A – Develop Air Connectivity in the APEC Region

¹ Based on published range for the base model of each aircraft type. Specific operating conditions may affect the range of the aircraft.

- Work closely with different stakeholders for example tourism boards, the Chamber of Commerce etc. to gain a deeper understanding of the development of the aviation demand
- Encourage airlines to explore the opportunities on the ultra-long-haul market when they take delivery of new generation of long-haul aircraft
- Ensure adequate long term planning and investments are in place for the aviation infrastructure
- Closely work with the airline industry to enhance sustainability and profitability of the industry
- Explore the possibility of improving security and travel facilitation with electronic or smart visa systems as advocated by the World Economic Forum (WEF), United Nations World Tourism Organization (UNWTO), the World Travel and Tourism Council (WTTC), and other organizations
- Reduce Passenger Movement Charge on international air passengers

Appendix A: Methodology

This section explains the methodology applied by IATA and presents the data used to feed the various underlying analysis. To conduct the analysis, IATA took systematic steps identified in Figure 3

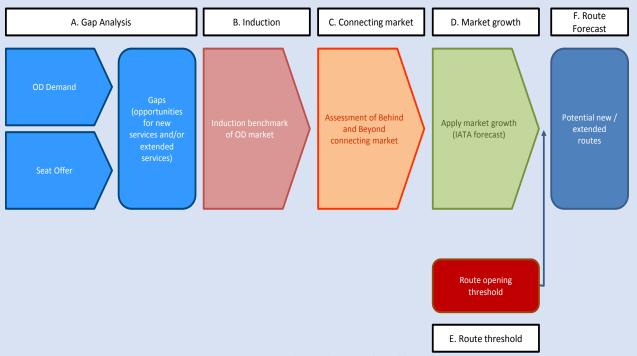


Figure 3: Process used to complete analytical work

The first step involved a demand-supply gap analysis aimed at identifying the unserved routes, and presenting potential demand for future development. The size that this potential demand could actually represent if turned into non-stop service in the future was subsequently forecast, using realistic assumptions related to induction, connecting potential, and demand growth.

Data fueling the model

Principal data for the model originates from Airport IS. IATA's Airport IS system uses IATA billing and settlement plan data to provide detailed demand and supply information on total air traffic. This data has been available for over a 10-year historical period (since 2005).

Approximately 18,500 international APEC routes were analyzed in the execution of this study. Airport IS data was particularly relevant in the gap analysis and assumption development.

Academic articles and published ratios were also used to justify some of the assumptions, including induction and origin destination traffic captured through non-stop service.

For some of the other variables used in the final traffic determination, economic forecasts were extracted from IHS Global Insight, one of the world's largest commercially available economic databases.

Tourism data was extracted from the World Travel and Tourism Council.

Gap analysis

IATA applied a funnel approach in conducting the analysis. It first considered the market at the economy pair level, followed by city pairs leading to a market potential assessment (see figure below). Both seat supply and seat demand were considered in the analysis to identify gaps in air service.

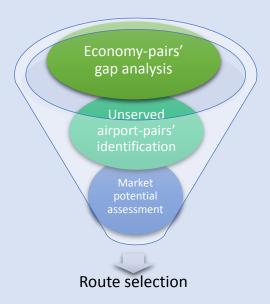


Figure 4: Funnel approach used to conduct analysis

The economy-pair analysis allowed IATA to identify unserved markets. The analysis showed that there is a daily demand of 1,643 Passengers Daily Each Way (PDEW) via existing connecting routes between the United States and Viet Nam where no non-stop service is presently available.

When extending the analysis down to the city pairs, it was possible to identify the largest unserved routes between the two economies. There are, for instance, 221 PDEW traveling between SGN and LAX.

The top 30 unserved routes for the entire APEC region are presented in the table below.

Origin Airport	Origin Economy	Destination Airport	Demand		non-stop seats in 2015 (SDEW)	1-stop seats in 2015 (SDEW)
MNL	The Philippines	YYZ	Canada	224	No	184
LAX	United States	SGN	Viet Nam	221	No	0
JFK	United States	MNL	The Philippines	202	No	178
JFK	United States	SYD	Australia	191	No	391
JFK	United States	SIN	Singapore	190	No	427
SFO	United States	SIN	Singapore	179	No	591
LAX	United States	BKK	Thailand	165	No	199
SFO	United States	SGN	Viet Nam	162	No	0
JFK	United States	MEL	Australia	133	No	0
PUS	Republic of Korea	SIN	Singapore	128	No	0
LAX	United States	SIN	Singapore	124	No	410
SAN	United States	YVR	Canada	123	No	28
JFK	United States	BKK	Thailand	121	No	0
JFK	United States	ITM	Japan	110	No	0
JFK	United States	SGN	Viet Nam	106	No	0
MCO	United States	NRT	Japan	105	No	246
SIN	Singapore	SHE	China	104	No	278
BKK	Thailand	DLC	China	99	No	197
IAH	United States	MNL	The Philippines	99	No	0
SHE	China	BKK	Thailand	97	No	45
JFK	United States	FOC	China	95	No	90
HKT	Thailand	BNE	Australia	94	No	0
LGA	United States	CUN	Mexico	91	No	44
LAX	United States	CGK	Indonesia	90	No	0
FLL	United States	YVR	Canada	88	No	12
MNL	The Philippines	BNE	Australia	85	No	66
MIA	United States	YVR	Canada	83	No	0
MIA	United States	YVR	Canada	83	No	9
SFO	United States	BKK	Thailand	82	No	0
SEA	United States	MEX	Mexico	81	No	34

Table 1: Top 30 unserved routes within APEC, 2015 data

Induction

To determine realistic estimates of the success of new air service, various assumptions were considered and applied to current passenger demand.

Induction is a well proven concept that explains how new direct air service has a significant impact on increasing the total number of O&D passengers on a city pair market. This is due to product improvement: shorter travel time, greater convenience, and more affordable ticket prices. The extent to which the market will be stimulated varies based on current levels of service (price and flight frequency) offered on a particular route. As stated in the Successful Air Service Development presentation (ICF International, 2014) a market's first non-stop flight can stimulate demand 100% to 300%.

IATA quantified this induction value to show a relationship between two primary factors: region pair and the size of the market before a new route is initiated.

The table below shows a sample of the stimulation rates considered for the analysis. For some instances where inadequate data (less than 4 routes), was available to conduct a region pair analysis, other variables were considered including the average of all routes, the average of long-haul routes or the average of short-haul routes, depending on the specific market.

Market	Base of 10,000 annual pax	Base of 25,000 annual pax	Base of 50,000 annual pax
All APEC Economies	130%	42%	18%
Long Haul	101%	36%	16%
Short Haul	150%	50%	21%
Australasia - South East Asia	159%	75%	44%
North America-Asia	104%	40%	
Asia - South East Asia	162%	53%	
Asia - North East Asia	155%	58%	27%
South East Asia - China	203%	78%	
South East Asia - North East Asia	125%		
Within Asia	160%	55%	24%
Within Southeast Asia	205%		

Table 2: Induction rates used during the analysis

Connecting potential

Increasing the quality of connections through alliance agreements, codeshares, shorter journey times or fewer stops increases overall travel demand in connecting markets. It is a normal phenomenon for new routes to not only increase demand for the city pairs served but also for beyond and behind destinations that are now more easily accessible (Swan, 2008). On long-haul routes, typically two-thirds of the passengers will make a connection.

IATA's analysis found that connecting markets would stimulate at various rates depending on the region of origin and the hub airport being flown through. These ratios are applied in determining the impact of a new route on connecting flows.

Table 3 below shows an example for Viet Nam:

	SGN	HAN
North America	16.2%	
Australasia	39.9%	
Asia	9.7%	5.3%
South East Asia	9.4%	3.7%
China	4.9%	7.2%
North Asia	14.4%	13.7%

Table 3: Connecting potential rates used when flying to/from APEC regions and SGN/HAN

	LAX	SFO	ORD	BNE	MEL	YYZ
South East Asia	31.3%	19.9%	94.7%	12.7%	9.3%	49.6%

Table 4: Connecting potential rates used when flying to/from South East Asia to a selection of other main hubs

Demand growth

This refers to the consideration of the natural growth observed on a market segment. IATA Economics publishes a detailed inter- and intra-regional global traffic forecast. These demand growth forecasts were used to provide a regionally specific rate of growth to and from Thailand between 2016 and 2018. Growth was typically seen to be around 5%. Demand growth also refers to the fact that approximately 80% of a market will choose a non-stop flight option if it is available (Belobaba, 2015).

Other

Other factors, including distance and available traffic rights, were used to refine the assessment of potential new service to be offered. Distance determines the feasibility of offering a non-stop flight with existing technology, using 15,000km as a maximum distance. Available traffic rights consider the bilateral agreements between economies and the current use of those bilateral rights.

Final route forecast

After conducting the gap analysis and applying the established rates from the various assumptions, the future market potential was estimated, as illustrated in Figure 5 below for the LAX-SGN route.

				1	2	4	
Origin Airport	Destination Airport	Destination Economy	2015 OD Non- direct Demand	OD Captured Though Deorect Service	OD Stimulation	Behind/Beyond Connecting Potential	Caculations
LAX	SGN	Vi et Nam	(A) 221	(B) 80%	(C) 12%	(D) 31%	
				177	24		(1) = AxB
				└ →	21		(2) = 1xC
			Su	btotal	198		(3) = 1+2
			→			90	(4) = 3/(1-D)
		LAX-SO	LAX-SGN Total Market Potential (2015 Base)				(5) = 3+4

Figure 5: Example of the various assumptions being applied to determine the potential for new air service.

Appendix B: Overview of IATA and IATA Consulting

IATA

IATA: The International Air Transport Association was founded in 1945 as the prime vehicle for interairline cooperation in promoting safe, reliable, secure, and economical air services for the benefit of the world's consumers. IATA provides fundamental support and leadership for the commercial aviation industry. IATA is fully committed to supporting commercial aviation industry's stakeholders and governments in their efforts to achieve profitability and long-term viability.

IATA's mission:

To represent, lead, and serve the airline industry.

IATA's vision:

To be the force for value creation and innovation driving a safe secure and profitable air transport industry that sustainably connects and enriches our world.

IATA in numbers:

- 250+ member airlines
- 83% of total air traffic
- D387B processed by IATA financial systems
- 1,400+ employees
- 54 offices in 53 countries

IATA Consulting

IATA Consulting overview

IATA Consulting has comprehensive experience in the full array of business challenges facing the aviation sector. Serving the airline industry for 70 years, IATA has developed unrivalled practical experience, which we bring forth to provide the best solutions to our clients.

With our depth and breadth of aviation industry experience, we assist clients maximize the value of their operating model, realize growth ambitions, and gain insights that translate into sustainable competitive advantages.

IATA Consulting has expertise in the following areas:

AIRLINES

Solutions to achieve real and lasting results in every aspect of airline commercial and operational management.

AIRPORTS, PASSENGERS & SECURITY

Solutions to plan your airport efficiently to avoid costly mistakes and profit from untapped opportunities.

AIRPORTS, PASSENGERS & SECURITY

Solutions to optimize your operations and improve your safety and security while reducing costs.

SAFETY & FLIGHT OPERATIONS

Solutions for aviation organizations and airlines to improve safety, efficiency and air transport management.

ENVIRONMENT & ECONOMICS

Solutions for fulfilling the vision of a safer, more competitive and sustainable aviation industry.

Our Clients

IATA Consulting has successfully demonstrated its capabilities by providing airlines, airports, tourism offices, and other organizations with accurate, unbiased and reliable high-quality information and analysis to help them define and understand their markets while ensuring their long-term facility development and financial success.

IATA is trusted by multiple clients all over the world including airlines, airports, governments and aviation institutions.

Why IATA Consulting was chosen for this project

IATA has, over time, recruited and retained some of the most highly experienced and capable aviation consulting resources within the aviation industry. Due to its position at the heart of the industry, IATA has access to exceptionally skilled and informed subject matter experts and specialists. IATA Consulting's objective is to make a positive difference to its clients' performance, while delivering quality services to all industry stakeholders.

IATA Consulting provides its customers with vast knowledge and expertise in all sectors of the industry worldwide. Our approach has been finely tuned to leverage IATA's global presence and industry thought leadership position in the development of tailored solutions that fit with local cultural considerations and embody international best practices. Our consultants rely on international state-of-the-art standards, unmatched access to data, products and expert resources to provide cost-efficient and highly informed solutions.

IATA is backed by a robust set of decision support tools, Airport IS/PaxIS have been essential to undertake this project.

Airport IS and **Pax IS** are the most comprehensive aviation databases available in the marketplace, capturing 100% of traffic around the world and bringing together total market supply and demand under a single platform. The data provided is accurate and reliable as it is captured through IATA's Billing and Settlement Plan (BSP).

Produced by

International Air Transport Association

Head Office Canada: 800 Place Victoria, PO Box 113 Montreal H4Z 1M1, Quebec, Canada

www.iata.org/consulting

For

Asia-Pacific Economic Cooperation Secretariat 35 Heng Mui Keng Terrace Singapore 119616

Tel: (65) 68919 600 Fax: (65) 68919 690 Email: <u>info@apec.org</u> Website: <u>www.apec.org</u>

© 2016 APEC Secretariat

APEC#216-TO-01.2