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 In grades K-6, we teach primarily arithmetic and simple geometry for one 
basic reason: as part of basic literacy.  At the secondary level, we teach mathematics, 
or, perhaps more accurately, the mathematical sciences (including statistics, computer 
science, operations research, et al.) still as part of basic literacy but for several other 
major reasons: to be a wise consumer; to be an informed citizen capable of 
understanding issues of the day; to apply on the job; and (for only a few) to make 
discoveries that will expand the field.  Because of its importance, throughout the 
world mathematics enjoys a status in schools second only to reading and writing in 
one’s native language. 
 
  The mathematics curriculum has many sizes.  From smallest to largest, they 
are: 

the problem or episode  a few seconds to many minutes
  

the lesson     a class period or two 
the chapter or unit    a few weeks 
the course     typically, a half year or year   
the school mathematics curriculum K-12 
the entire school curriculum  K-12 (all subjects) 

The phrase “learning progressions in mathematics content” suggests “big ideas” that 
are at the size of the course or the school mathematics curriculum.  That is, for the 
most part, these ideas take many months or several years to develop.  These are the 
ideas that I discuss in this paper.  But the good curriculum and the good teacher make 
many smaller progressions, often within an individual lesson, sometimes within a 
chapter or unit, and sometimes over an entire year. 
 

Although this paper is concerned mainly with the specific grade range 7-12 
(i.e., what is often termed secondary education), some of the learning progressions 
described here should typically begin in primary education earlier than grade 7, while 
others will go past grade 12 into tertiary education.  Many of the progressions 
described here have been applied in developing the materials for grades 6-12 of the 
University of Chicago School Mathematics Project, but a casual look at the materials 
will usually not uncover the progressions because they tend to be beneath the surface. 

 
My list contains nine progressions, not ordered by any measure of importance.  

It could have contained a few more.  The list purposely ignores the sequencing of 
algorithms and the questions of the order of deduction in geometry.  Algorithmic and 
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logical sequences have formed the basis for virtually all school mathematics 
instruction over the years and are so familiar to mathematics educators that their 
repetition is not needed.  However, I believe they should be seen in a particular 
perspective relative to the nine learning progressions, so I comment on them towards 
the end of this paper.  Also, some progressions of slightly lesser importance have been 
omitted for lack of time and space. 
 
Progression 1:  from whole number to rational number to real number, and then to 
complex number and vector 
 
 I begin here because this progression is the earliest in schooling, beginning 
even before school.  The key question here is:  What are the numerical objects of 
mathematics?   

 
The numerical objects obviously begin with the counting numbers, including 

0.  Early in the primary grades, through measurement and money, students should see 
that the counting numbers do not suffice and that negative numbers are natural in 
situations that have two opposite directions, such as above and below sea level, or 
profit and loss.  By grade 7, we hope that the student realizes that symbols such as 

116.42 and 
5

12
 represent single numbers, not two numbers 5 and 12 with a 

mysterious bar between them, and that students also see 5 and +5 as the same, and -5 
as a single number and not as a number with a mysterious sign.   
 

The move from fractions and decimals to the rational numbers requires that 
students understand that the rational numbers are dense, that is, that we can find 
rational numbers as close to a given rational number as we like, both greater than it 
and less than it.  The number line is a powerful representation for this move as it also 
is for the indication that a single number may be represented in a variety of ways. 
 
 These ideas are necessary for the progression to irrational numbers and real 
numbers, and for the idea of continuity that students will encounter in their study of 
functions.  There are several ways to get from rationals to irrationals.  One common 

way is via nested intervals.  For 2 , we square rational numbers to see if their 
squares are less than or greater than 2.  

1
2
 < 2 and 2 < 2

2
, so 1 < 2  < 2. 

1.4
2
 < 2 and 2 < 1.5

2
, so 1.4 < 2 < 1.5. 

1.41
2
 < 2 and 2 < 1.42

2
, so 1.41 < 2  < 1.42. 

…and so on.  And we conclude that 2  is described by a decimal that begins 1.41…   
 
 A problem with this sequence is that students come to think that real numbers 
are decimals rather than that they can be represented by decimals.  So it is important 

to get at some real numbers directly.  We can do it easily with 2  by noting that this 
is the length of a diagonal of a unit square.  I have colleagues who have trouble with 
this idea; they think that lengths are really rational numbers because in everyday life 
we compute with rational numbers and not irrationals.  I argue that since the the 

length of the diagonal of a real square is as close to 2  as the length of its side is to 
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1.  A similar argument can be made for π and many other irrationals.  We can then 
move to the notion that any infinite decimal represents a number. 
 
 This progression can branch from real numbers in three ways.  A first branch 
is to vector.  If numerical objects can represent points on a number line, then why not 
points in the plane?  Addition and subtraction of vectors and the cross product for 
multiplication help students to appreciate the properties of operations of numbers with 
which they are familiar.  And if objects can represent points on a line or points in a 
plane, then why not points in space?  In school mathematics, we do not go beyond 3-
dimensional vectors, but this progression continues into the study of linear algebra in 
college. 
 
 A second branch is to complex number.  Although it is common and natural to 
introduce complex numbers as solutions to polynomial equations that cannot be 
solved in the reals, a disadvantage of this order is that students too easily interpret the 
terms real and imaginary as descriptors chosen because the set of numbers they 
describe exist and do not exist.    
 

The concreteness of the complex numbers can come to play earlier if these 
numbers are associated with the coordinate plane as reals are with the number line, 
and their addition and multiplication are seen geometrically to generalize addition and 
multiplication of reals.   One of the most interesting aspects of this connection 
between arithmetic and geometry is the fact that addition of complex numbers is easy 
in rectangular coordinates (that is, (a, b) + (c, d) = (a + c, b + d)), while multiplication 
is easy in polar coordinates ([r, ] • [s, ] = [rs,  + ]), and turns DeMoivre’s 
Theorem into a corollary.   
 
 Throughout this particular path of this progression from whole number to 
complex number, a student shouold view the arithmetic operations as being able to be 
interpreted both as binary operations (e.g., adding two numbers yields a third number) 
and as unary operations (adding by a particular constant number has its own 
properties).  E.g., it is as unary operations that students learn what it means to add 0 to 
a number, and that adding n and subtracting n are inverse operations. 
 
 A third branch from real number is to the matrix as an object that can 
represent a single point, a finite set of points, a vector, or more generally, multi-
dimensional data.  Many students do not understand the properties of the operations of 
arithmetic until they have seen objects such as matrices for which important 
operations of addition and multiplication can be defined but do not possess all the 
field properties.  The connection of matrices with vectors, which can wait until the 
tertiary level, brings the first and third branches together. 
 
Progression 2: from numerical expression to algebraic expression, and then to 
function as a relationship and then to function as an object 
 

The progression from numerical expression to algebraic expression includes 
with it the progression from number to variable. 
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In the primary school, the student should be introduced to two uses of the idea 
of variable:  (1) variable as unknown, as in 3 + ___ = 10 or 3 + x = 10; (2) variable as 
generalized arithmetic, as in  

A = LW as describing (area of a rectangle = length times width), or 

a + 0 = a as generalizing the instances (9.6 + 0 = 9.6) and (
2

3
 + 0 =

2

3
).  

In the secondary school, the student then can be introduced to a third important use:  
(3) variable as function argument or parameter, as in f: x  3x + 5, in which the idea 
of a variable continuously varying first appears.  At the tertiary level, a fourth use, (4) 
variable as arbitrary symbol, as in descriptions of the 4-group {I, a, b, ab} by the 

equations a
2
 = b

2
 = I; ab = ba together with group properties. 

 
A key idea in the progression from counting number to rational number is the 

treatment of a fraction as a single number.  This idea, that a pair or larger group of 
symbols can be viewed as one, is called chunking by psychologists; it is the cognitive 
mechanism by which we view a string of letters as a single word, the cognitive 
mechanism underlying all of reading, and it is exceedingly important in the 
progression from arithmetic expression to algebraic expression. 
 
 Let us consider a common pattern used in textbooks, such as the length of a 
train in which the engine at the front is 30 meters and each car is  20 meters long.  
We ask for the length of the train.  At the primary school level, students make a table. 
   
Number of cars Length of train 
1 30 + 20 = 50 
2 30 + 20 + 20 = 70 
3 30 + 20 + 20 + 20 = 90 
… … 
 
The next step in the progression is to convert the repeated additions to multiplication. 
Number of cars Length of train Length of train 
1 30 + 20 = 50 30 + 20 = 50 
2 30 + 20 + 20 = 70 30 + 2•20 = 70 
3 30 + 20 + 20 + 20 = 90 30 + 3•20 = 90 
… … … 
It is critical that the student understand the importance of the expressions 30 + 20, 30 
+ 2•20, and 30 + 3•20.  They are not just for calculating the answer.  They are for 
generating a pattern that will enable a person to find quickly the length of the train 
regardless of how many cars there are.  A slight change in the table helps. 
  
Number of cars Length of train Length of train 
1 30 + 20 = 50 30 + 1•20 = 50 
2 30 + 20 + 20 = 70 30 + 2•20 = 70 
3 30 + 20 + 20 + 20 = 90 30 + 3•20 = 90 
… … … 
n  30 + n•20 
 
We now have an expression for the length of the train, using the variable to generalize 
the arithmetic.  The expression represents a single number, the length, but also tells us 
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how that length was calculated.  We graph the ordered pairs (n, 20n + 30) as dots and 
find that the dots lie on a line.  We have pictured a function.  At this time, this 
function is a relationship – given the input n, the expression indicates the output 30 + 
20n.  When we write f(n) = 30 + 20n, we reinforce that idea.  We are now using the 
variable n as an argument in a function.  Only when the student sees and graphs many 
other relationships, noting that some are linear and some are not, does it make sense 
to try to categorize functions into linear, quadratic, etc.  And then, when we look at 
the properties of these functions, it makes sense that we can name a function by a 
single letter.  If we have used f(n) notation, the letter to use is naturally f.   

 
This progression, from numerical relationship between pairs of numbers to 

thinking of the relationship as a single object, can take years, stretching from early to 
late secondary school and often into the tertiary level of mathematics study.  It is 
helped by having operations on functions, such as function addition or function 
composition.  The move to thinking of functions as objects requires that we have 
properties of classes of functions that are not the same as properties of individual 
functions.  For instance, to assert that the set of linear functions is closed under 
composition requires that a student think of a function as an object.  In my opinion, 
the practice of some mathematicians and in some technology that f(x) stands for a 
function hurts this progression.  To me it is important to distinguish between the value 
of a function and the function itself.  

 
Here is another illustrative example that begins with a typical problem and shows 

how the progression is often poorly made. 
 

Jane has an average of 87 after 4 tests.  What score does 
she need on the 5th test to average 90 for all five tests?   

 
 When this question is given along with the study of algebra, the student is 
expected to let a variable such as x stand for Jane's score on the 5th test and to solve an 

equation such as 4 • 87  x
5

 = 90.  Here the variable is an unknown.  But most students 

(and I have found, most teachers – even those with substantial mathematical knowledge) 
use arithmetic to solve the problem.  This exposes a fundamental difficulty.  Since the 
problem can be so easily solved without algebra, students naturally wonder why algebra 
is needed to find the unknown.  Thus, though one reason for presenting this problem in a 
class is to show the power of algebra, the effect is the opposite.  Certain common 
problems that are supposed to help the progression from arithmetic to algebra actually 
hinder it.   
 

If we stop with just the solution to this problem, then we have shown that algebra 
is not needed, but most teachers do stop once they have the answer.  To justify the use of 
algebra, we can generalize the problem.  In the statement of the problem, replace 90 by y.  
(This is an easy step for us but certainly not for all students unless they have had some 

instruction.)  If Jane's average for all 5 tests is y, then 4 • 87  x
5

 = y.  This is an equation 

for a linear function with slope 
1

5
and y-intercept 

4 • 87

5
 or 69.6.  It shows that any point 
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Jane gets on any test contributes 
1

5
 to her average.  The graph of this equation for 0 ≤ x ≤ 

100, is a segment from (0, 69.6) to (100, 89.6), shows all the possible solutions.   
 
 
 
 y = Jane’s average 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
By generalizing the pattern, we have now seen the power of algebra to solve an 

entire set of problems at once, something that arithmetic cannot do.  And we have also 
changed the idea of x being an unknown to x and y being pattern generalizers and finally 
to x being an argument of a function.    

 
 
Progression 3:   from properties of individual figures to general properties of all 
figures in a particular class 
 
 I use the phrase “class of figures” because the most obvious examples are 
geometric, but could just have easily used “set of objects”.  Breaking a set of objects 
into various subsets based on properties is a very important idea in mathematics; we 
classify numbers, functions, 2-dimensional geometric figures, 3-dimensional figures, 
matrices, transformations, etc.  Our reason for doing so is because we want to deal 
with properties that are held by all objects in a set.  And we want to do that because of 
efficiency.   
 
 For instance, we might have students solve individual quadratic equations by 

completing the square.  But, if we have completed the square for the general case ax
2
 

+ bx + c = 0 in order to develop the Quadratic Formula, there is no need to complete 
the square to solve any future quadratic equation.  We might have students determine 
the length of the hypotenuse of a right triangle with legs 1 and 3 using an area 

(0, 0) (100, 0) 

(0, 69.6) 

(100, 89.6)

4 • 87  x

5
 y

x = Jane’s score on 5th test
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argument such as in the following diagram, but if we do it in general, we have the 
Pythagorean Theorem (or the Theorem of Three Squares, as it is called in some of the 
economies represented here) and there is no need to use the area argument again.  
 
Area of middle (tilted square) = area of large square – 4(area of right triangle) 
    =  16 – 4 • 0.5 • 1 • 3 
    =  10 

So the side of square has length 10 . 
 1 

1 

1

1

3 

3 

3 

3 

 
 The generalization from individual instances to a general formula is a 
hallmark of mathematics and one of the progressions that students need to see again 

and again.  If we have deduced that 2  is irrational, how many other numbers can we 
prove to be irrational by an analogous argument?  
 
 The move from properties of individual figures to properties of all figures in a set 
can be subtle and unsettling for students.   For instance, consider the teacher who wishes 
to convince her students that the sum of the measures of the angles of a triangle is 180°.  
But what does this mean?  There are subtleties here.  Consider statements (1) and (2).  
They have much the same sentence structure.  But there is quite a difference between 
them.   
 (1) In ∆ABC, AB + BC + AC = 15. 
 (2) In ∆ABC, mA + mB + mC = 180°. 
Statement (1) applies only to certain triangles and is given information in some problems, 
while statement (2) applies to all triangles and is often isolated as a theorem.   
 

Here is another example of the same type where the statements look even more 
alike.  Each of these statements could be true. 
 (3) In a triangle, the largest angle is obtuse. 
 (4) In a triangle, the smallest angle is acute. 
Here, statement (3) could be given information about a particular triangle while statement 
(4) is true for all triangles.   
 
 Young children are aware of properties of individual triangles, such as in (1) or 
(3).  But the study of geometry requires that students be able to work with properties of 
all triangles, such as (2) and (4).   These semantic similarities between statements get in 
the way, and they motivate the use of quantifiers. 
 (1) It is sometimes true that in ∆ABC, AB + BC + AC = 15. 
 (2) It is always true that in ∆ABC, mA + mB + mC = 180°. 
 (3) In some triangles, the largest angle is obtuse. 
 (4) In all triangles, the smallest angle is acute. 
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How do we know that (2) is always true?  Typically, a good teacher gives students 

an activity:  draw a triangle on a sheet of paper, carefully measure its angles, and add the 
measures.   

 
What happens?  Though most of the sums students obtain from measuring are 

near 180°, they are not all exactly 180°.  The teacher may explain that measurements are 
not exact, but some students wonder whether statement (2) is really true always.  Maybe 
the teacher is oversimplifying, just as is done with spelling rules in English such as "i 
before e except after c", being that there are exceptions such as height and weight, not all 
of them weird.  Maybe the sums of angle measures round to 180°.   Maybe the sum is 
180° only for triangles within a certain range of shapes.  Maybe the average sum is 180°.  
 

There is now a quandary regarding how to proceed because one of the points the 
teacher wants to make is that you cannot make a generalization for infinitely many 
objects just by looking at specific examples.  The activity seems like a perfect hands-on 
activity but it has failed to help the progression from individual figures to a class of 
figures.  The difficulty is that the strategy used by Miss Smith is fine for asserting the 
truth of mA + mB + mC = 180° for a particular ∆ABC, and even for many 
particular triangles but not for all triangles. 

 
Here is a better activity for making the progression.   

Step 1:  Cut out a triangle from a sheet of cardboard.   
Step 2.  Use this triangle to outline a triangle on a sheet of paper.   

1

2 3
 

Step 3.  Outline the same triangle again and turn the second triangle so that the 
two triangles together form a parallelogram.   

 

1
3

1

2

2 3
 

 
 

Step 3:  Repeat the parallelogram to tessellate the plane. 
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1
3

1

2
1

3

1

2
1

3

1

2

1
3

1

2
1

3

1

2
1

3

1

2

1
3

1

2
1

3

1

2
1

2 3 2 3 2 3

2 3 2 3 2 3

2 3 2 3 2 3

3

1

2

 
 When the parallelograms are tessellated, we see that around each vertex are six 
angles, two copies of each angle of the original triangle.  Since the sum of the six angles 
is 360°, the sum of three different angles is 180°.  Now we see that the sum is 180° 
because it is half of the number 360° that is used for a complete revolution.  And we 
should tell why the Babylonians chose 360°.  And we might even tell our students that 
angle measure does not have to be in degrees.  If another unit were used, then the sum 
would be different.  And students should know why this tessellation could not be done on 
the Earth's surface, not because they would necessarily have that on a test, but to see the 
significance of parallel lines in this argument and just in case someone asked.  

 
Here a dynamic geometry drawing program such as Cabri Geometrie or 

Geometer's Sketchpad can help, because it enables the student to verify large numbers of 
examples with triangles of all different shapes.  But the technology does not suffice; Paul 
Goldenberg has reported that many students think the computer is pre-programmed to get 
the results it shows.  Deduction is needed. 
 
Progression 4: from inductive arguments to deductive ones and then to deduction within 

a mathematical system 
 
 In the preceding progressions, I have used inductive thinking several times.  
Inductive thinking is how we live most of our lives.  We walk or ride to work using a 
route that in the past has served us well.  We try out something in the classroom and, 
if it works, we’ll use it again and again.  Induction is also one of the two mechanisms 
by which we reason in mathematics.  Induction gives us conjectures. 
 
 Induction is often misused in school.  Children are asked:  What is the next 
number in this sequence?  1, 2, 3, 4, 5, 6, 7, 8, 9, …   The correct answer:  There is not 
enough information to tell.  It could be 10 if the sequence is that of the counting 
numbers in increasing order.  It could be 11, if the sequence is that of the positive 
integers not divisible by 10.  It could be 0 if the sequence is the sequence of the units 
digits of the positive integers.   
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Induction can be subtle.  Consider 0
0
.  It seems reasonable to view 0

0
 as the 

limit of 0
x
 as the real number x approaches 0.  We calculate:  0

2
 = 0; 0

1
 = 0; 

00.5  0 = 0; 00.1  010  = 0; and so on.  It seems definitive:  0
0
 = 0.   

 

But it also seems reasonable to view 0
0
 as the limit of x

0
 as x approaches 0.  

Now we calculate:  2
0
 = 1; 1

0
 = 1; (0.5)

0
 = 1; (0.1)

0
 = 1.  It seems just as definitive:  

0
0
 = 1.  We tried to induce the value of 0

0
 and came up with two different values 

depending on which pattern we wished to follow.  So a first step in the progression is 
to show that induction does not always work even in a closed mathematical setting.   
 
 Deduction begins with a single word “if” or “suppose” or “assume”, followed 
by a question “What if?” or “Then what happens?”  Assumptions are important in 
deduction.  What if the sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, … is the sequence of integers 
in increasing order that are the days of the months of the year beginning with 
January?  Then we have 1, 2, 3, …, 31, 1, 2, 3, …, 28 (or 29, depending on the year), 
…  It’s not the simple sequence we thought! 
 

Deduction is the hallmark of mathematical thinking.  We have not taught 
students the essence of mathematical thought unless they appreciate the power of 
deduction.  The full power, however, only comes when we are aware of the 
assumptions from which we deduce.  Those assumptions are perhaps easier to see in 
applications, where assumptions become constraints in a problem, than in theory, 
where assumptions often need to be traced back to a large number of postulates.   
 

You have saved 500 baht.  What if you save an additional 150 baht each 
week?  Then what happens?  This open-ended question is the essence of mathematical 
thinking.  Too often we tell students what we want them to prove rather than asking 
them to prove anything from the given information and then see how far they can go.  

 
We can do this also with pure mathematics.  Divisibilty properties are very 

suitable for early deduction and many students are curious about them.  Suppose m 
and n are any different integers, each divisible by 7.  What can be deduced about m + 
n?  (Some students begin by thinking that m + n is always divisible by 14; deduction 
shows that m + n is always divisible by 7 and a counterexample shows that m + n is 
not always divisible by 14.)  What can be deduced about mn?  What can be deduced 

about m
3
n

2
 + m

2
n

3
?  Students can discover as well as deduce properties of 

divisibility. 
 
Deduction often carries us into mathematics at a higher level.  The human 

population of our planet is currently about 6.8 billion and growing at a rate of 1.17% a 
year according to recent estimates.  If we assume those estimates are correct and the 
growth rate is constant, then what?  A first reasonable conclusion is that the 

population P of the planet is given by P = 6,800,000,000(1.0117)
n
, where n is the 

number of years from now.  
 
A nice aspect of this problem is that the question of the domain of n becomes 

significant to the application and is more than a textbook exercise.  Can n be 0?  (Yes, 
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that is the population “now”.)  Can n be negative?  (Yes, for example, if n = -2, then 
the formula calculates the population two years ago under the assumptions of the 
problem.)  Must n be an integer?  (No, but then we are forced into asking when 
exactly “now” is.)  This example can be used to give meaning to non-integer and 
negative exponents. 

 
In this population example, when n = 1000, P ≈ 766,000,000,000,000, that is, 

about 766 trillion people, or over 5,000,000 people per square kilometer of land.  In 
contrast, Macau, the most dense country in the world, has a density of under 19,000 
people per square kilometer.  What seems to be a weakness of the formula we have 
used is actually its strength, because we can change the assumptions and so deduce a 
new formula.  We might want to indicate a limit L for the world population; if so, we 
can obtain a logistic formula for the world population n years from now, describable 

by the recursive formula P(n+1) = P(n) + .0117P(n) 1
P(n)

L







 .  We may have moved 

into tertiary mathematics, but we have also given secondary school students a reason 
for studying that mathematics.  In this way, applied mathematics can give at least as 
much meaning to deduction as pure mathematics. 

 
To understand deduction fully, students also need to see examples where false 

assumptions lead to nonsense.  Perhaps my favorite example of this type is to ask 
students for any two integers between 0 and 100.   Say that the integers are 48 and 61.  
Then ask for two more, say 9 and 91.  Now I assert that I will prove:  If 48 = 61, then 
9 = 91.  One possible proof is as follows:   

 48  =   61  

  48 • 
1

13
 =   61 • 

1

13
    

  
48

13
  =  

61

13
   

  3
9

13
 =   4

9

13
 

  3  =   4  
  3 • 82  =   4 • 82  
  246  =  328  
  246 – 237  =  328 – 237  
  9  =    91  

The point is that even if a person uses valid reasoning, if that reasoning stems from 
statements that are not true, then you cannot be certain of the truth of any conclusion.  
But if you use valid reasoning from true statements, then you must get true 
statements.  And, if you reason from a given statement whose truth you do not know, 
but you get a false statement, then you know that the given statement had to be false.  
This, of course, is the foundation of indirect proof.   
 
 Somewhere before they leave their study of mathematics, students need to be 
introduced to the wonders of a mathematical system, that is, a system where 
deduction from a small number of postulates has, over the years, led mathematicians 
not only already to deduce a myriad of theorems but to be continually proving more 
theorems.  Either Euclidean geometry, or the real number complete ordered field, or a 
set of postulates for the positive integers are good candidates for such a system.  They 
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are good candidates because there are an unlimited number of theorems in each 
system and so they display the immense power of deduction.   
 
Progression 5: from uses of numbers to uses of operations to modelling with functions 
 
 I am a passionate believer that students should see the wonders of pure 
mathematics, but I am at least as passionate in believing that students must be 
introduced to the breadth of applications of our subject.  If a student leaves a 
mathematics classroom not knowing why the mathematics is important, it is our fault.  
We cannot expect teachers of other subjects to tell students why they need to study 
mathematics.  That is our job. 
 
 Modeling begins in the primary school.  In primary school, we expect that 
students have seen numbers used as counts and as measures, with counting units and 
units of measure, respectively.  As mentioned earlier, they should also have seen that, 
in situations with two directions, positive and negative numbers arise.  Fractions and 
percent show that numbers are also the result of ratio comparisons, and such numbers 
do not have units.  π is a wonderful example of an irrational number used as a ratio 
comparison   Numbers also represent locations.  Street addresses, rank orders, and 
scales such as the Centigrade scale for temperatures or the decibel scale for sound 
intensity represent this fourth use of numbers.  Numbers also may be used as 
identification or codes, as in charge card numbers or ISBNs.  And of course there are 
numbers simply used as numbers, such as when we examine prime numbers or lucky 
numbers.   
 
 From the uses of numbers develop meanings for the operations.  The sum x + 
y has meaning if x and y are counts or measures, but not necessarily when x and y are 
ratio comparisons, and almost never if x and y are codes.  When x and y are locations 
such as scale values, the sum x + y does not have much meaning – the sum of two 
temperatures does not have meaning, for example, yet the difference x – y almost 
always has a meaning.  Each of the operations has fundamental meanings:  addition as 
putting-together or slide; subtraction as take-away or comparison, and special cases of 
comparison are error and change.  Multiplication is area or acting across, size change, 
or rate factor; division is rate or ratio; powering is growth.  The meanings are related 
to each other just as the operations are: for examples, take-away undoes putting-
together; size change undoes ratio. 
 
 As a progression, it is fundamentally important that in the primary school 
these uses of numbers and operations go beyond counts to include non-integers.  
Then, in the lower secondary school, these uses can be employed to give meaning to 

algebraic expressions.  For instance, in the expression 
y2  y1

x2  x1

 for the rate of change 

between (x1, y1)  and (x2 , y2 ) , y2  y1 and x2  x1 are subtraction comparisons and the 

division is a rate, so it is no surprise that 
y2  y1

x2  x1

 represents rate of change.   

 
 From the meanings of algebraic expressions come the situations that functions 
model.  When items with unit costs x, y, and z are purchased in quantities A, B, and 
C, the sum Ax + By + Cz is an addition putting together rate factor multiplications to 
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arrive at a total price.  Linear functions arise from these linear combinations or 
situations of constant increase or constant decrease.  Exponential functions model 
situations of growth or decay.  Quadratic functions model situations of acceleration or 
deceleration (the rate of a rate), or area.  Trigonometric functions model circular 
motion and are often quite appropriate in situations where phenomena occur 
periodically.  The broad kinds of situations that the various types of functions model 
should be as much a part of the curriculum as the mathematical properties of these 
functions, for it is almost certain we would not be studying them were it not for their 
applications.  
 
 It is useful at this point to consider the three levels of modeling: the exact 
model, such as in the number of games necessary for n teams to play each other; the 
almost-exact theory-based model, such as in modeling the path of a thrown ball by 
taking measurements along its path; and the impressionistic model, such as when one 
finds that the population of a region over a particular time interval is described well 
by a quadratic function and no theory explains that.  We sometimes give the incorrect 
impression that mathematical models are always approximate and messy, but the 
reality is that many mathematical models are exact.  On the other hand, some users of 
mathematics give the alternate impression – that their impressionistic models are 
reliable – and we need to caution against that improper inference. 
 
Progression 6: from estimation of a single measurement to statistics for sets of numbers, 

and from descriptive statistics to inferential statistics  
 
 In many quarters, probability and statistics are considered together and 
separate from other mathematics.  I see these two topics for the most part as instances 
of other progressions.  For instance, the calculation of relative frequency is an 
example of ratio division.  The fitting of lines or curves to data is how we model data 
by functions.  Still, there is a progression that is distinctively statistical, namely the 
consideration of data sets (rather than a single data set) to make inferences about 
situations of variability, and the role of randomness.   
 
 The public often has the view that mathematics is an exact science, and that 
estimates are never as good as exact values.  How wrong this view is!  There are often 
times that estimates are to be preferred over exact values.  Consider (1) predictions 
such as the lifetime of a light bulb or the lifetime of an individual person or the price 
of chicken next year, or (2) values that are changing constantly such as temperatures 
or populations, or (3) measurements such as a person’s waist size or score on a 
memory test, or (4) values that we want to be consistent in a table, such as 3-place 
decimals in describing the winning percentages of sports teams.  In these cases, 
estimates by convenient nearby numbers, intervals, or distributions are more 
appropriate models than an exact value.  For convenience we may substitute a single 
number or two to describe an interval or a distribution, numbers we call statistics.   
 
 Thus this progression begins with the importance of estimates.  Then it moves 
to consideration of how to describe (estimate) a set of numbers without listing all the 
numbers.  We may use single numbers such as the mean (an example of rate division) 
or the median (a location), or pairs of numbers as with an interval, or multiple 
locations such as the 5-number summary (minimum, 1st quartile, median, 2nd 
quartile, maximum) – five numbers used as locations!  We realize that we have lost 
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information in the use of these statistics, so we often return to the full distribution and 
describe it with such terms as skewness, symmetry, tails, its modes and outliers, and 
its spread, with statistics such as the standard deviation or mean absolute deviation. 
 
 It is often said that statistics is different from mathematics because statistical 
thinking is probabilistic and inferential, while mathematical thinking is deductive.  
True, but good statistics uses deduction from hypotheses just as mathematics does.  
The major difference, in my opinion, is that statistics is applied mathematics in that it 
arises from data, while mathematics arises from theory.  To make this distinction, it is 
better to use the term relative frequency distribution for a distribution based on data, 
and probability distribution for one based on theory, rather than the terms 
experimental probability and  theoretical probability found in many places.  The 
better terms emphasize that probabilities are always either assumed (often through 
randomness or from past experience) or calculated from assumed probabilities, 
whereas relative requencies always arise from data.  For instance, in Malaysia in 2007 
provisional figures from the U.N. indicate that 235,359 males and 221,084 females 
were born.  Thus the relative frequency of male births was about 0.516.  Assuming 
randomness, the probability that a randomly-selected baby born in Malaysia in 2007 
is a boy is , so by making the randomness assumption we can turn the relative 
frequency into a probability, but far more likely for calculations a person would use 
0.516 or 0.52 for the probability.     
  
 It is useful to have distributions that arise from data that are not random (such 
as test scores) and data that are randomly generated from experiments (such as coin-
tossing), because we often want to pick a data point at random from a non-random 
distribution (for instance, if we choose a student at random from a non-random 
distribution, what is the probability that the test score is greater than some number).  
This is preparation for the idea of events with low probability, that is, events that are 
not very likely to happen. 
 
 Although it is not uncommon to separate statistics from other mathematics, 
there are several advantages to teaching them together.  First, statistics requires 
dealing with expressions involving absolute value, square roots, binomials, and other 
algebraic language.  Second, distributions are functions and can be used to strengthen 
function concepts such as end behavior, symmetry, and limits.  Third, distributions 
can be modeled by functions, such as when linear regression is used to determine the 
line of best fit for a set of data.  Fourth, transformations that are applied to data such 
as scaling and translating in order to normalize the data are often also applied to 
functions in order to study their behavior. 
 
 Once students have dealt with data and they, students are ready for hypothesis 
testing and inferential statistics.  For instance, one might ask about the Malaysian 
2007 births, could a ratio this far from 50% males and 50% females have occurred by 
chance?  In other words, if (i.e., hypothesizing that) the sex of a baby is random 
between males and females, what is the probability that 235,359 males would be born 
out of 456,443 births.     In this way, null hypotheses and alternate hypotheses are 
assumptions made for a particular situation and thus give another opportunity for 
deduction.  The only difference is that the answers to questions of inference are 
typically probabilities (“The probability is x that data like these would arise if the data 
were random.”).  In this case, the probability is very, very small that such numbers of 
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males and females would occur.  With small numbers, we would calculate a 
probability like this using binomial coefficients; with large numbers such as these, we 
use a normal distribution.  But calculating is not the only way.  Students should learn 
simulation such as the use of Monte Carlo techniques. Among all the direct statistical 
tests, I think it is easiest to begin hypothesis testing with Chi-square tests.  Finally, a 
major goal of teaching this content should be to immerse students in examples of how 
statistics can be used to gain valuable information about and make inferences from 
data in order to combat the common societal view that statistics are not to be trusted. 
 
Progression 7: from the idea of same size and shape (same shape) to a general definition 

of congruence (and similarity) applying to all figures, to conditions for the 
congruence (and similarity) of simple geometric figures, to the application to all 
figures and graphs and the Graph Transformation Theorems 

  
 The treatments of congruence and similarity in K-12 schooling do not 
typically follow a smooth path.  Congruence in lower grades is “same size, same 
shape”, applying to all figures, yet when a concerted study is begun in later grades, 
the figures are often restricted to be triangles and perhaps circles. Later, perhaps only 
in college, a definition of congruence in terms of transformations is provided that 
brings the student back to consideration of all figures.   In my opinion, this is not the 
best progression.  The restriction of congruence to simple figures is not at all helpful 
for student understanding of the idea.   
 

Throughout schooling it is possible to consider figures as congruent if and 
only if one can be mapped onto the other by a composite of reflections, rotations, 
translations, and glide reflections (or any one of many other equivalent definitions).  
This gives an intuitive picture that can be reinforced by reference to products 
produced by a machine, tessellations, duplicate copies of a photograph, etc.   

 
There are two advantages to this sequence.  By considering the graph of a (typical 
elementary) function as a set of points in the plane, the idea of congruence easily 
extends to the congruence of graphs.  A particular special case are graphs that are 
translation images of each other.  Equations for these graphs can be found using the 
Graph Translation Theorem: In a relation described by a sentence in x and y, the 
following two processes yield the same graph:   
(1) replacing x by x–h and y by y-k; and  
(2) applying the translation T(x,y) = (x+h, y+k) to the graph of the original relation. 
It is somewhat surprising that this theorem is not found in many of today’s books, 
given the number of corollaries that are found.  Call the original relation the parent 
and its translation images the offspring of the relation.  Then the following 
correspond: 
 

Shape of 
graph 

Parent Offspring (image) 

Line y = mx y – y0 = m(x – x0)   Poinr-Slope 
Line y = mx y – b = mx Slope-Intercept 
Circle x2 + y2 = r2 (x – h)2 + (y – k) 2 = r2 
Parabola y = ax2 y – k = a(x – h) 2 
Sine Wave y = sin x y = sin(x – c) Phase Shift 
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Parabola 
intercepts ax2  = c  x = 

c

a
 a(x – h)2  = c  x = h

c

a
  Quadratic Formula 

Exponential y = b
x y = ab

x 
Logarithmic y = logb(x) y = logb(ax) 

   
Similarity is often restricted in K-12 schooling to polygons and polyhedra.  

This, too, is unfortunate, as so many interesting instances of similarity involve more 
complex figures.  Every day students see pictures on television and other media that 
are similar to the actual objects being pictured.  In the upper primary and lower 
secondary school, scale drawings, physical models of large objects, and maps can be 
used to demonstrate similarity.  Dilatations (size changes) can be introduced to create 
larger and smaller images of given figures.  A definition of similar figures in terms of 
transformations is easily given once there has been the corresponding definition for 
congruent figures.  The Fundamental Theorem of Similarity, that in similar figures 
with ratio of similitude k, corresponding angles have equal measures, corresponding 

lengths are in the ratio k, corresponding areas are in the ratio k
2
, and corresponding 

volumes are in the ratio k
3
 can be applied to the question of the existence of giants 

such as those students have read about in fairy tales and see in cartoons.  Under a 
general definition of similarity, all parabolas are similar and so are all graphs of 
exponential and logarithmic functions. 

 
These properties of the graphs of functions follow from the Graph Scale Change 
Theorem: Translation Theorem: In a relation described by a sentence in x and y, the 
following two processes yield the same graph:   

(1) replacing x by 
x

a
and y by 

y

b
; and  

(2) applying the scale change T(x,y) = (ax, by) to the graph of the original relation. 
 
As is the case with the Graph Translation Theorem, this is a powerful theorem 

with many useful corollaries that are important precursors for the study of integrals in 
calculus and assist in the understanding of graphs of all functions. 

 
Shape of graph Parent Offspring (image) 
 
Circle 

 
x2 + y2 = 1 Ellipse 

x

a









2

+ 
y

b









2

 = 1  

Hyperbola xy = 1 *Hyperbola:  xy = k 
Parabola y = x2 *Parabola: y = ax2 
Line y = x *Line:   y = mx 
Sine Wave y = sin x Amplitude/Period:  y = Asin(Bx)  
Exponential y = b

x *Change of Base:   y = ac
x 

Logarithmic y = logb(x) *Change o Basey = logc(x) 
*Image is geometrically similar to the parent. 
 
Progression 8: from scientific calculators to graphing calculators to computer algebra 

systems 
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 In many economies the major role played by mathematics beyond arithmetic is 
– whether intentional or incidental – as a sorter; that is, to separate out better students 
from poorer ones regardless of their interests or vocational goals.  In years past, using 
mathematics as a sorter was defensible because not many people would be helped by 
knowing mathematics beyond arithmetic and simple geometry and because the 
examination questions involved skills that were needed by the small percent of the 
population who needed higher mathematics.  However, today we feel that most people 
would be helped by knowing about the behavior of functions, the fundamentals of 
descriptive and inferential statistics, and many other mathematical topics not found in 
the primary school curriculum.  And today there exist hand-held devices and 
computer software that can accomplish any of the difficult calculations that often 
served to sort students in the past.  These tools make it possible for the first time to 
realize the goal of significant mathematical literacy for all.  A corollary to this 
argument is that if one does not allow this technology, then the sorting done by 
mathematics is often due to performance on tasks that can be carried out 
automatically by a machine and not on a person’s ability to understand and apply 
mathematical ideas. 
 

Most of the individuals charged with the task of creating standards in our 
economies today were in school when there were no hand-held calculators.  These 
individuals, almost all of whom were very successful in their mathematics study, 
often dismiss today’s calculator and computer technology not only as unnecessary but 
even as harmful to the mathematics education of today’s youth.  I profoundly 
disagree.   

 
Since 1975 we at Chicago have been developing curricula using the latest 

technology – first, just scientific calculators, then graphing calculators, and most 
recently, computer algebra systems (CAS).  Our experiences have convinced me and 
those who work with me that this technology enhances both the conceptual 
understanding and problem-solving ability of students.  For slower students, those 
who in the past might have been sorted out of mathematics and even out of advanced 
schooling because of difficulties with our subject, the technology is particularly 
important.  It enables them to understand mathematics that would otherwise defeat 
them.  It is life support, helping them to survive their mathematics courses, or it is a 
crutch, helping them until they can walk.  For better students, the technology is an 
extender, helping them to move more easily into more advanced mathematics.  And 
for all students, the technology sends a message – that mathematics is current and 
relevant in today’s world. 

 
Today’s advanced technology is so sophisticated that it, like any other 

advanced concept, can overwhelm students who have not had experience with the 
corresponding work that is not so advanced.  The order is straightforward:  from early 
primary school, students should be working with calculators.  In later primary school, 
scientific calculators that can deal with fractions should be used.  In early secondary 
school, students should begin working with calculators that enable graphing and 
geometry.  And, in later secondary school, students should have calculators with 
computer algebra system capability.  The CAS technology, the newest in the arsenal 
of technology that can do mathematics, we have found to be particularly important for 
students who have had trouble learning algebra.  For the first time, they can play with 
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algebraic patterns with confidence that what they are doing will lead to correct 
answers, and by seeing the patterns in the answers, they gain proficiency. 

 
These practical reasons for a technology sequence have a theoretical 

counterpart in the well-known paper-and-pencil algorithms that traditionally dominate 
the learning of arithmetic and algebra.  Paper-and-pencil is a technology whose 
applicability hundreds of years ago, when paper was scarce and pens required ink, 
was strikingly analogous to the situation today in that the more affluent people and 
societies have access while the poorer lag.  Schools could not begin to teach everyone 
the paper-and-pencil algorithms until almost all students had their own paper and ink 
supplies, and it is still the case in some schools that these are scarce commodities and 
rationed.   

 
The procedures employed to obtain answers in arithmetic and algebra are 

carefully sequenced in today’s books.  We can also expect the analogous procedures 
to obtain answers using calculators to be carefully sequenced; the only problem is that 
many new and more powerful calculators are getting on the market each year. 

 
To those who believe that paper-and-pencil work is mathematics, and 

calculator work is not, we might note that large numbers of students in the United 
States blindly apply paper-and-pencil algorithms with no idea of why they work or 

whether their answers make sense.  They cannot multiply 
3

4
 by 8 unless they change 

the 8 to 
8

1
.  To multiply 357 by 8000, they first put down three rows of zeros (not just 

three zeros).  They are totally at a loss to explain long division.  Algebra is even less 
understood.  Polynomials are factored with no idea that if a number is substituted for 
the variable, the value of the original and factored expression will be the same.  
Equations are solved with no idea why one would ever want to solve an equation.  
Rational expressions are operated on with no idea of how to check whether the answer 
is correct except to look in the back of the book and hope that an answer is there.   

 
Having the technology does not automatically eliminate these deficiencies, but 

it enables both student and teacher to spend time on the important ideas and not lose 
the forest through the trees.  In almost all situations, paper-and-pencil manipulation 
should be a means to an end, not the end itself. 

 
But it is certainly the case that some students overuse calculators, just as many 

o us use paper and pencil to calculate answers that we should have memorized.  In our 
experience, this is particularly true of students who did not have calculators while 
they were learning the algorithms.  Such students see calculators merely as a time-
saver and do not understand their use in helping to learn facts and algorithms and to 
check work.  Students who have calculators while they are learning mental and paper-
and-pencil arithmetic are forced from the start to make decisions about when it is 
appropriate to use any or all of these means and seem to be able to make wiser 
decision later about the use of any of these technologies. 
 
Progression 9: from a view of mathematics as a set of memorized facts to seeing 
mathematics as interrelated ideas accessible through a variety of means. 
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 The sequence of ideas in mathematics can proceed logically as it does in many 
economies with the teaching of geometry and in many college courses.  It can proceed 
algorithmically, that is, by the complexity of the algorithms, as it has traditionally 
done in our teaching of arithmetic, algebra, and calculus.  Some have tried courses in 
which the mathematics of a topic proceeds in the order of the historical development 
of the topic.  In the previous eight progressions, the mathematics proceeds from the 
cognitively simple to the cognitively more complex. This is the vertical dimension of 
school mathematics, from bottom to top, from lower grades to higher grades.  
 
 But there has to be a horizontal dimension, in which the algorithmic order, the 
logical order, the mathematical modeling, and the representations all play roles in the 
student’s learning of the mathematics being studied.  To know how to do some 
mathematics without knowing why you would want to do it, or why it works, or how 
to know you are right is insufficient.  Cognitive scientists tell us that being able to 
connect and categorize helps learning.  They also view representation and metaphor 
as the ultimate tests of whether someone understands a particular idea.  Students need 
to be able to check their work by appealing to logic, or an application, or a 
representation.  In the UCSMP curriculum, we call this the SPUR approach to 
understanding – Skills, Properties, Uses, and Representations. 
 

Consider for example the concept of absolute value. Skills associated with this 
concept:  calculating |x| for any value of x; solving sentences such as |x| = k, |x| > k, |x| 
< k, |x – a| = k, |ax + b| < c, |x2 + bx| = 10x, and so on, of increasing complexity.  

Properties associated with absolute value include the definition:  

|x| = 
x if  x  0

x if  x  0





; x ≤ |x| for all x; |xy| = |x||y| for all x and y; |x| + |y| ≥ |x + y|, and so 

on. 
 

Uses associated with absolute value come from the idea of distance, namely, 
|x| is the distance from x to 0 on the number line; |x – y| is the distance from x to y .  
Special cases of distance are  (undirected) change; error; comparison. For instance, in 
manufacturing an object when the error between the desired length L of the object and 
the actual length is  A, the error is |L – A|, and if lengths are measured in millimeters 
and we wish that error to be less than 0.1 mm, then the object’s length must satisfy |x 
– A| < 0.1   

 
Representations of absolute value are on the number line or coordinate plane.  

or instance, the solutions to the inequality |x – A| < 0.1 are all points within 0.1 of A 
on a number line, or we can graph y = |x – A| in the coordinate plane and look for the 
values of x corresponding to those values of y that are within 0.1 of the x-axis. 

 
 The SPUR dimensions of understanding of a general concept can be applied to 
specific situations as well and can illustrate interrelationships among the first eight 
progressions.  Consider this cartoon that appeared in a daily newspaper in the United 
States. 
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The numbers 9.9 and 9.2 here are statistics; in fact, they are means.  To us the cartoon is 
humorous, finishing with a common joke when a mean of counts is not a whole number.  
But to many people, the 9.9 and 9.2 indicate the lack of reality of mathematics.  Just as 
you cannot have a "point-two" friend, you cannot trust statistics.  And if students have not 
made the transition from whole number to rational number, and if they have not dealt 
with statistics, they will have great difficulty getting this joke. 
 
 The understanding that seems to be lacking here is the notion that in the process of 
gaining simplicity by using a single number to describe a set of numbers, something is 
always lost.  Here we have single numbers describing entire distributions, and we have 
lost the distributions. 
  
 The next day the cartoonist continued this theme. 
 

 
 
 When I saw this cartoon, I became intrigued.  Assuming the same number of 
men and women participated in the poll, how can you get 9.5 as an average of 9.9 and 
9.2?  Thus begins a mathematical analysis of the situation.  

 
The numbers 9.9, 9.2, and 9.5 are all rounded to the nearest tenth.  Each number 

stands for an interval.  If m and w are the values for the average number of close friends a 
man and a woman have, then 9.85 ≤ m < 9.95 and 9.15 ≤ w < 9.25.  (I am assuming we 
are rounding up all decimals that end in 5.)  Within these intervals we wish to know 

whether it is possible to have 9.45 ≤ 
m  w

2
< 9.55, or, equivalently, 18.9 ≤ m + w < 19.1 .  
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So one way to answer the question is to give pairs of values of m and w that satisfy the 
three inequalities written above in bold.   

 
To find some pairs is not particularly difficult, but it seems like a very difficult 

problem to find all possible values.  But if we examine the graphical representation, 
algebra, geometry, and statistics come together in a beautiful way.  The graph of 9.85 ≤ m 
< 9.95 is a vertical stripe; the graph of 9.15 ≤ w < 9.25 is a horizontal stripe, and the 
graph of  
18.9 ≤ m + w < 19.1 is an oblique stripe between the lines m + w = 18.9 and m + w = 
19.1.  And all stripes contain their lower boundaries but not their upper boundaries, as 
shown on the next page.  
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The values of m and w that satisfy all three inequalities provide ordered pairs 

(m,w) that are either on or in a triangle.  For instance, one pair of values is 9.88 for m, 
9.17 for w, and so m+w = 19.05.  So it could have been that the men in the study had, on 
average, 9.88 friends and the women 9.17 friends.  They would have an average of 9.525 
friends.  And when these numbers are rounded, we get 9.9 friends for men, 9.2 friends for 
women, and 9.5 for the entire group just as we wanted. 

 
This example involves algebraic skills (the solving of a system of inequalities), 

properties (realizing the meaning of a measurement to a single decimal place as well as 
the principles underlying the transformation of the inequalities into nice form), uses (the 
modeling of friendship by a rational number), and representations (the graph and the 
geometric representation of the algebra).   

 
This example is cute but was not picked because it is cute.  The horizontal 

integration of mathematics is as important as its vertical progression; otherwise students 
naturally believe that if they can answer questions involving dozens of separate 
mathematical ideas, then they have learned mathematics well. But they have not learned 
one of the most messages of mathematics: that the mathematics they are studying 
operates within a single logical system that ranges from everyday arithmetic through the 
most complicated of functions that one studies in analysis and includes measurement, 
algebra, geometry, trigonometry, probability, and statistics along the way.   

 
It is possible to extend each of the progressions described here to the mathematics 

that students may encounter in college.  Linear and exponential models pave the way for 
the consideration of logistic models.  The transformations basic to Euclidean geometry 
lay the foundation for affine and non-linear transformations.  Relationships within and 
between algebra and geometry exemplify the morphisms found in higher algebra.  And it 
has been impossible to cover all the bases of mathematics in grades 7-12.  The study of 
combinatorics, probability, and limits, and the logic of definition and of propositions 
came to mind as I wrote this essay and I am certain there are other important topics I have 
missed.   I have also not dealt with nurturing the affective dimension of schooling – that, 
whatever we do, we have not succeeded with an individual student unless that student 
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views mathematics without fear, with the desire to learn more, and with the awe that our 
subject deserves.   

 
 

Learning Progressions and Standards 
 

 The essay above is an expansion of the paper I wrote for the APEC conference, a 
paper whose title was given to me.  At the conference, the paper was presented in the 
session dealing with “standards” and I was asked by the organizers also to add some 
comments in this regard.   
 
 We recognize that standards can play a variety of roles in mathematics education, 
both in curriculum and evaluation.  (1) Standards may determine curriculum, forcing all 
materials in a particular economy or geographic area to adhere to them.  (2) Standards 
may guide curriculum, serving as suggestions to which an ideal curriculum might aspire.  
(3) Standards may represent criteria for minimal performance in order to move to a higher 
level.  (4) Standards may set goals for high performance at a given level.  Typically, 
evaluation standards are more explicit than curriculum standards, though sometimes the 
same standards are used to determine both curriculum and evaluation. 
 

It is not uncommon to see standards conceptualized as a two-dimensional matrix, 
in which one dimension consists of strands or areas of mathematics and a second 
dimension is grade levels.  Thought of in that way, five progressions in this paper lie as 
follows: 

 Progression 1:  Number 
 Progression 2:  Algebra 
 Progression 3:  Measurement 
 Progression 6:  Statistics 
 Progression 7:  Geometry    

Three other progressions are in the realms of process standards, i.e., they cross all content 
areas.  They are related to three of the four SPUR dimensions of understanding described 
in Progression 9.  
  Progression 4:  Reasoning (Properties) 
  Progression 5:  Modeling (Uses) 
  Progression 8:  Algorithmic Thinking (Skills) 
The progressions mentioned at the start of this paper as being so common they not need 
be explicated here are those of deduction and of algorithms, and are related to 
Progressions 4 and 8 within this paper.  The horizontal Progression 9 can be viewed as an 
integrative progression tying together the other eight areas and in which the fourth SPUR 
dimension, Representations, plays a major role.  
 
 Although the learning progressions described in this paper are, for the most part, 
directed at the secondary (grades 7-12) level, I have purposely not tried to be more 
specific and identify a particular year or years for a particular aspect of a progression.  
Although it is often useful, both in theory and in practice, to treat students of the same age 
as if they are cognitively alike, they do differ, and some are ready for particular ideas 
earlier than others.  This readiness depends to a great extent on the expectations set in 
earlier years both in the home and in school, on the time that a student has in which to 
devote to mathematics, on the interest that the student has or displays in learning 
mathematics, and, in some economies, on the ability of the home to provide support for 
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student learning.  These criteria for readiness are more significant at the secondary level 
than at the primary level and they account for the fact that in many economies, the 
mathematical requirements for students begin to be differentiated at the secondary level 
on the basis of student performance and/or interest.  Virtually all economies have realized 
that, at the secondary level, a “one size fits all” set of standards is not workable and, at 
some time, there needs to be what mathematics is for all students and what mathematics is 
for those who express more interest, desire, or ability. 
 
 There are very few observations that can be made about the learning of 
mathematics that apply in all cultures, but one of them, known from the very first 
international studies of the 1960s, is that time-on-task is a significant variable in 
performance.  In the high-performing economies on international comparisons of 
mathematics performance (Singapore; Korea; Japan and Hong Kong, China), students put 
in large amounts of time outside the classroom, often in organized tutoring centers 
(sometimes called “tuition” or “juku”) or with individual tutors.  These same conditions, 
not as well-organized, exist in high-performance public and private schools in the United 
States.  In economies where vast numbers of students do not attend secondary school, or 
must work or do chores many hours a week in addition to their schooling, or have little or 
no access to technology, students cannot be expected to proceed through these learning 
progressions as quickly. 
 
 Further arguing against identifying particular grade levels for aspects of a 
particular learning progression is the ever-changing world of mathematics itself.  The 
learning progressions related to the paper-and-pencil solving of equations in algebra are 
challenged by technology that can solve the most difficult of these equations in the same 
way that it solves the easiest.  Statistics, which a half-century ago was rarely mentioned in 
standards, is now viewed in many economies as an important area of secondary 
mathematics, taking time that used to be devoted to other mathematical areas.  As recent 
as twenty-five years ago, mathematical modeling was viewed in most economies as a 
tertiary area.  Dynamic geometry technology has changed the ways in which we view 
geometrical objects.   
 
 The lack of specificity in the progressions is also due to my view that there are 
innumerable ways to approach mathematics meaningfully.  In this paper I have suggested 
some ways that I hope will provoke others to examine the mathematics represented in 
their standards and the materials used in their economies and organize learning 
progressions that are suitable for the students in their economies. 
 
   
 
 


