Soil Contamination

Takeshi KOMAI, Ph D. Institute for Geo-resources and Environment, Geological Survey of Japan, AIST

Abstract

The problems of soil and groundwater contamination are of great concern regarding to risk management and sustainable development of industries. Risk and exposure assessment for subsurface environment is very important for both aspects of health and environmental protection as well as making decision of remedial goal for engineering activities. Exposure due to hazardous chemicals in the subsurface environment is essential to assess risk level to individual person, especially from soil and groundwater environmental media. In this seminar, the status of soil and groundwater contamination is presented to discuss on the problem for environmental risk assessment. The methodologies of fate and exposure models are also discussed by conducting the case studies of exposure assessment for heavy metals, organic compounds, and dioxin compounds. In addition, the structure of exposure models and available data for model calculation are examined to make clear more realistic exposure scenarios and the application to the practical environmental issues. Three kinds of advanced remediation techniques for soil and groundwater contamination are described in this paper. These are evaluated by using the process of risk assessment. It is very important to study the methodology of MNA, monitored natural attenuation, into account for conducting risk assessment of long-term contamination and low concentration in groundwater. MNA is one of the effective methods to make decision to the clean-up actions for soil and groundwater contamination, to which risk assessment can be conducted scientifically. Risk assessment is an essential process of corrective actions for soil and groundwater contamination, regarding for the problems of risk benefit, cost effectiveness, and information disclosure.

- 1. Soil and Groundwater Contamination in Japan
 - (1) Fact of subsurface contamination
 - (2) New regulation of soil contamination
- 2. Risk Assessment Methodologies
 - for Site Assessment
 - (1) Exposure scenario of contaminated soil
 - (2) Exposure and risk assessment models
- 3. Monitored Natural attenuation of contaminants
- 4. Remediation Techniques of Soil and Groundwater Contamination
- 5. Risk Management of Subsurface Contamination

1. The status of Soil and Groundwater Contamination in Japan

- Social background Difficult to appear, Site specific, Property of land
- Survey and monitoring Few monitoring data, Difficulty of detailed survey
- Assessment methods and models No official methods, Uncertainty of parameters
- Management Criteria, Remediation goal, Risk management

Kind of industrial site	Number of sites	References
Total number of operating site	387,645	from industrial data of METI
Non contamination site	90,507	industies of food, cloth and others
Large factory	1,850	more than 500 enployees
Gas station	60,421	from industrial data of METI
Cleaning factory	24,700	from industrial data of METI
Scientific laboratory	392	from industrial data of METI
Waste treatment site	13,705	from waste treatment data of MOE
Abandonded factory	48,352	in five years
Abandonded large factory	100	more than 500 enployees
Estimated number of sites		not including school, hospilal, airport, railway
needed for contamination	442,758	and other facilities
		Chemical substances related to Environment
		criteria of soil and groudwater
needed for contamination	442,758	and other facilities Chemical substances related to Environ criteria of soil and groudwater

Environmental criteria in Japan - criteria of soil quality-		
Heavy Metals Leaching	Heavy Metals Content	
Hg : 0.0005 mg/L	Hg: 9 mg/kg	
Cd : 0.01 mg/L	Cd : 150 mg/kg	
Pb : 0.01 mg/L	Pb : 150 mg/kg	
As : 0.01 mg/L	As : 150 mg/kg	
Cr : 0.05 mg/L	Cr(VI): 250 mg/kg	
Se : 0.01 mg/L	Se : 150 mg/kg	
Others	Others	
CN : non-ditection	CN: 50 mg/kg-free	
F : 0.8 mg/L	F: 4000 mg/kg	
B : 1.0 mg/L	B: 4000 mg/kg	

3. Monitored Natural Attenuation (MNA) for Groundwater Contamination

Monitored natural attenuation (MNA) methodology

4. Remediation Techniques for Soil and Groundwater Contamination

Advanced remediation techniques in Japan National project for soil remediation method Ministry of the Environment, 2002-2004 (Heavy metals) 1. In-site soil flushing using functional solutions 2. Electro-kinetics and/or electro-chemical methods 3. Biological treatment by phyto-remediation (VOCs) 1. In-site air injection and vapor extraction system 2. Bio-reactor system using microbiology consortium 3. Chemical treatment using activated iron powder

(DXNs and PCBs)

- 1. Geo-melting reactor system and glass consolidation
- 2. Electro-photochemical reaction system
- 3. Ultra-violet chemical treatment

Conclusion Remarks

 Risk management procedure including contamination survey, risk and environmental impact assessment is very important for soil and groundwater protection.
The status of subsurface contamination of Japan and

2) The status of subsurface contamination of Japan and remediation is presented to discuss on how we can reduce risks of soil and groundwater contamination.

Thank you for your attention!