Soil and Groundwater Contamination

-Determining the transport properties of low permeability geological materials in the laboratory-

Ming ZHANG, Ph.D Geo-analysis Research Group, Institute for Geo-Resources and Environment, Geological Survey of Japan, AIST

Abstract

The accurate characterization of transport properties of low permeability environments has important practical implications, such as in the fields of soil and water contamination and geological disposal of radioactive nuclear waste. Although principal mechanisms of mass and/or fluid transport in geologic media include advection, dispersion, chemical reaction, chain decay and/or biochemical retardation, etc, the most fundamental phenomena are advection and dispersion. When fluid flow is very flow, such as in the case of flow in low permeability environment, the dispersion becomes all most equivalent to diffusion. The advection phenomenon basically related to the hydraulic or flow properties, and the dispersion phenomenon basically related to the diffusive transport properties can be evaluated from the permeability and diffusion tests, respectively. Although characteristics of geologic media are generally fractured and heterogeneous, and tests can also be performed in situ, this talk will concentrate only on laboratory tests on continuous and homogeneous geologic materials in the laboratory, due to the limit of time.

Although several types of laboratory permeability and diffusion tests are available and have been widely used in geotechnical and/or geo-environmental fields, traditional test methods based on simple solutions corresponding to simplified boundary conditions have limitations in testing low permeability geo-materials, either due to the need of very long testing time and/or low accuracy.

This talk will be divided into two parts. In part I, the speaker will review recent advances in theoretical analyses of laboratory permeability tests, present potential strategies for effectively decreasing the test time, introduce a new and versatile laboratory system which can implement any of 6 test methods and show a series of experimental results which demonstrate the accuracy and efficiency of the new laboratory system. In part II, the speaker will review the concept and theory of conventional through-diffusion test, indicate potential problems, present 2 rigorous solutions to the through-diffusion test, theoretically evaluate the applicability and limitations of conventional through-diffusion test, and show an example of improved technique. Considerations and approaches presented in this talk may offer basic ideas to avoid misinterpreting the experimental data.

<u>Outline</u>	
The accurate characterization of transp Environments has important practical i *Soil and Groundwater Contamination *Geological disposal of radioactive nuclear wa Principal mechanisms of mass/fluid tran	ort properties of low-K mplications: stes nsport in geologic media
*Advection Hydraulic/flow properties *Dispersion Diffusive transport properties *Chemical reaction, *Chain decay, *Biochemi	Permeability testsPART IDiffusion testsPART IIical retardation, etc.
Characteristics of geologic media Fractured Heterogeneous	Test methods In-situ
<u>Continuous</u> Homogeneous geologic materials	In laboratory

* Application of the New Lab. System *										
Part of the Conditions										
Table 4 Conditions for cross-check K tests.										
		Shira	ahama san	dstone		Inada gra	anite			
Te	st No.	Conf. P (MPa)	Pore P (MPa)	Other condi.*	Test No.	Conf. P (MPa)	Pore P (MPa)	Other cond.*		
SV SV SV	S21CH S21FP S21TP	2	1	29.1 0.005 68.4	GHL1.5CH GHL1.5FP GHL1.5TP	1	0.5	29.4 0.002 34.9		
~ ~ ~	•	•	•	•	•	•	•	•		
SV: SV:	S4020CH S4020TP	40	20	31.4 76.2	GHL302FP GHL302TP	30	2	0.0002 117.7		
Rock type: S-sandstone; G-granite Orientation: V, P-Perpend. to & parall. to bedding for sandstone R,G,H-Perpend. to Rift, Grain & Hardway Planes for granite Specimen size: S-D50 X H25mm; L-D100 X H25mm Pressure conditions: Confining and pore P in MPa Test method: CH-Constant Head; FP-Constant Flow Rate(Flow Pump); TP-Transient Pulse										
*Otl	her condit	ions: Hy Pu	draulic hea lse pressure	id in cmH2 e in cmH2C	O for CH; q in () for TP	cm ³ /min fo	or FP;			
Examples of CH Results										

* Application of the New Lab. System*											
Table 5 Results obtained from the cross-check tests. $(T=15 \ C)$											
Test No.		K _i	Constant-headConstant-flow rate(FP)KiKoKave. TimeKhKwKsKhKw			Trans <i>K</i>	-pulse Time				
Sand- stone			0	mit			0	mit		Oı	nit
g GH	L1.5	3.06	4.29	3.68	3 240	4.57	4.51	4.53	2 970	5.91	792
GH	L21	4.14	3.10	3.62	5 775	4.28	4.77	4.85	1 980	6.61	470
Ğ GH	L42	3.51	3.28	3.40	5 788	3.88	4.10	4.11	2 790	7.12	940

×		
Hypothetica	I test conditions for theoretical simulat	ions
Specimen D=7cm L=1cm	Cross-sectional area (m2) Length (m) Effective diffusion coefficient (m2/s) Rock capacity factor	3.85E-3 1.00E-2 2.5E-13 3.5E-2
Source cell	Concentration (ppm)	127000
Measurement cell	Volume (m3)	4.00E-5
Specimen dimen	sions: our on-going experiments	

Theoretical evaluation (Errors from time-lag method)							
Definition of e $D_{e-err} = \frac{D}{2}$	ative errors $\frac{e-\det er \min ed}{D_{e-input}} \cdot 10$: 0% α _{err}	$= \frac{\alpha_{determined}}{\alpha_{input}}$	100%			
Relative errors in determining effective diffusion coefficient & rock capacity factor by using the time-lag method							
Relative	Concentration increase in measeRelative(% of constant concentration in						
errors	1%	3%	3 ‰ 5%	9%			
D _{e-err} (%)	96	96	94	88			
^α err (%)	93	90	73	26			
Conventiona tends to und	l through-diffu erestimate bo	ision test ba th the two pa	ised on time-la arameters	ag method			

PARAMETER BACK-CALCULATION TECHNIQUE (Decreasing inlet concentration-Increasing outlet concentration)						
Error function						
$\varepsilon = \sum_{i=1}^{n} \left\{ c(t_i)_{(D_{e,\alpha})} - c(t_i)_{(D_{e,\alpha})}^* \right\}^2$ <i>n</i> is the number of measured data points; $c(t_i)$ and $c(t_i)^*$ are the concentrations measured at time t_i						
Hypothetical test conditions for the theoretical simulations						
Specimen dimension	Diameter (m) Equivalent cross sectional area (m ²) Length (m)	0.064 3.22E-3 0.01				
Transpor properties	Effective diffusion coefficient (m ² /s) Rock capacity factor	2E-11 0.15				
Initial concentration	Normalized concentration	1				
Volumes of cells	Source cell (m ³) Measurement cell (m ³)	4.4E-5 4.4E-5				

Concluding remarks (1)

Laboratory diffusion test:

Well-established & widely adopted approach for characterizing the transport properties of geo-materials

Conventional through-diffusion tests:

May be time-consuming, cumbersome

May cause errors in the effective diffusion coefficient & rock capacity factor due to the difference between actual test conditions & analytical assumptions

Concluding remarks (2)

If solution in measurement cell is not replaced with fresh solution to maintain 0 concentration condition & data are interpreted with conventional time-lag method

There will be a tendency to underestimate both the effective diffusion coefficient & rock capacity factor

The higher the concentration increase in the measurement cell, the larger will be the error in estimating the two parameters

