Remediation of Subsurface Contamination Using Bacteria

Mio TAKEUCHI

Institute for Geo-Resources and Environment, Geological Survey of Japan, AIST

Abstract

Contamination of subsurface environments (soil, groundwater) is a world wide environmental issue. There are many bacteria in subsurface environments and some of them help us to maintain clean environments. I would like to introduce various abilities of bacteria and a case study at the contaminated site in Japan.

Environmental Quality Standards are set for...

Inorganic substances

Cd, Pb, Cr(VI), As, Hg, Cu, Se, F, B

Organic substances

total cyanide, organic phosphorus, PCBs, dichloromethane, carbon tetrachloride, 1,2-dichloroethane, 1,1dichloroethylene, cis-1,2-dichloroethylene, 1,1,1trichloroethane, 1,1,2-trichloroethane, trichloroethylene, tetrachloroethylene, 1,3-dichloropropene, thiuram, simazine, thiobencarb, benzene

Remedial actions adopted in		# of countermeasures		VOCs Category 1		Heavy metals Categories 2 & 3		complex contaminations	
ne past (Ministry of E	past (Ministry of Environments, 2006)		total	FY2004	total	FY2004	total	FY2004	total
Mo	nitoring of groundwater quality	9	(315)	7	(166)	1	(101)	1	(48
Rer	noval of Soil Contamination	382	(1,860)	81	(622)	211	(898)	90	(340
	Excavations	296	(1,246)	32	(209)	205	(844)	59	(193
	hsitu Cleanup	86	(614)	49	(413)	6	(54)	31	(147
Г. П.	Bioremediation	18	(44)	10	(27)	0	(3)	8	(14
	Chemical Decomposition	16	(54)	7	(25)	2	(7)	7	(22
	Soil Vapor Extraction	20	(199)	13	(160)	1	(4)	6	(35
	Pump and Treat	24	(282)	13	(189)	2	(31)	9	(62
	Soil Washing	5	(15)	4	(5)	0	(6)	1	(4
	Others	3	(20)	2	(7)	1	(3)	0	(10
Insi	tu Containment	11	(85)	0	(7)	7	(54)	4	(2-
	Sheetpiles	8	(37)	0	(3)	5	(21)	3	(1)
	Soil/Cement Mixing Walls	0	(20)	0	(2)	0	(13)	0	(
	Others	3	(28)	0	(2)	2	(20)	1	(
Offs	site Containment	3	(8)	0	(0)	2	(5)	1	(
Sta	bilization (insitu)	3	(62)	0	(2)	2	(51)	1	(
Sta	bilization (exsitu)	2	(51)	0	(2)	2	(43)	0	(
Cor	ncrete Vault Containment	0	(31)	Q	(2)	0	(23)	0	(
To	psoil shuffling	13	(25)	3	(4)	7	(15)	3	(
w/ o	on-site clean soils	3	(4)	0	(0)	2	(3)	1	(
w/c	off-site clean soils	10	(21)	3	(4)	5	(12)	2	(
Soi	Caps	10	(72)	0	(2)	10	(61)	0	(
Pay	ements	24	(167)	0	(8)	21	(129)	3	(3
w/ c	concrete	12	(81)	0	(4)	11	(66)	1	(1
w/a	asphalt	12	(86)	0	(4)	10	(63)	2	(19
Sig	ns and fence	1	(58)	0	(11)	1	(37)	0	(10
Oth	iers	6	(249)	1	(112)	4	(109)	1	(2)
	total	362	(1,681)	66	(431)	232	(1,018)	64	(23)

What do they need?
(1) Carbon source
•CO ₂ autotrophs
•organic chemicals heterotrophs
(2) Energy source
light phototrophs
chemical compounds chemotrophs
(3) Minerals
N, P, Mg, K, Ca, Fe
(4)Oxygen
aerobes use oxygen as terminal electron acceptor
anaerobes use chemical compounds as terminal electron acceptor

With metals

1. Leaching (direct or indirect)

leaching with Thiobacillus in the copper ore is famous

 $Cu_2S + O_2 \rightarrow CuS + Cu_2 + H_2O$

2. Absorption/accumulation utilization as a bioreactor (Cd, Cu, Ni, As, Pb, Fe, U..) **3.** Oxidation/Reduction

Cr(VI), U(VI) can be insoluble and less toxic when reduced to Cr(III), U(IV)

4. Volatilization

Hg²⁺ is volatilized when reduced to

Hg or methylated

Degradation of VCOCs by aerobic bacteria

·Toluen/phenol degrading bacteria Pseudomonas cepacia G4 Psedomonas putida F1 Pseudomonas mendocina KR1 Pseudomonas stutzeri OX1 methanotrophic bacteria Methylosinus trichosporium OB3b Methylocystis sp. M Methylomonas methanica 68-1 • propane degrading bacteria

Mycobacterium vaccae JOB5

·ammonium oxidizing bacteria

Nitrosomonas europaea

Degradation by co-metabolisms by oxygenase

CH₃Hg⁺

Hg0

They can't use VCOCs as carbon source nor as energy source

Degradation of VCOCs by anaerobic bacteria

Methanogens, sulfate reducing bacteria, Dehalococcoides

5. Bioremediation utilizing bacteria

- Biostimulation
 Inject nutrients to contaminated subsurface to stimulate the bacterial activity to degrade contaminants
- 2. Bioaugmentation Incubate bacteria with ability to degrade contaminants in the lab, and inject the cells into the contaminated subsurface
- 3. Monitored Natural Attenuation (MNA) When natural attenuation by intrinsic bacteria are occurring, the risk for the human health can be reduced by monitoring the contamination and controlling it not to further expand (US EPA,1999).

Bioremediation studies on VCOCs	
contaminated site utilizing methanotrophs	5

Site	Type of bioremediation	depths(m)	contaminants	Conc.(ppb)	Injected substrate	effect
Moffest ¹	stimulation	4.3-5.8	TCE*	100	CH ₄ , O ₂	23% (2 m downgradient)
Kururi ²	stimulation	8-17	TCE	200	CH4, O2, N, P	10% (0.75-1.5m downgradient)
Savanna River ³	stimulation	27-45	TCE	<14,000	CH4, O2, N, P	<95% (monitoring wells)
Chikura4	stimulation	12-20	DCE*	35	CH_4 rich groundwater	50& (2 mdowngradient)
Chico ⁵	augmentation	26-28	TCE	425	M. trichosporium	<98% (injection well)
Abiko ⁶	augmentation	3-5	TCE	128	CH ₄ rich groundwater	${>}78\%$ ($2\mathrm{m}\mathrm{downgradient})$

References

1: Roberts et al., 1990; Semprini et al., 1990; Semprini et al., 1991, 2: Eguchi et al., 2001, Pfiffner et al., 1997, 4: Takeuchi et al., 2005, 5: Duba et al., 1996, 6: Takeuchi et al., 2004

Case study-MNA site in Japan

For MNA, precise evaluation of the contamination (source of the contaminant, movement of the contaminant based on geology and hydorology) and microbiology are important.

In Yamagata Prefecture, Japan, we have been monitoring groundwater contamination with VCOCs at 5 sites for almost 10 years.

Chemical c	characteristic	s and the nur	nber of <i>De</i>	halococcoia	les in GW			
Deha/Eub (%)	TOC (mg/l)	CH4 (mg/l)	Fe (mg∕l)	ORP (mV)	NH4 (mg/l)			
0.01-3.7	1.4-16	0.2-4.6	21-181	-42 - +100	0.5-3.5			
Deha/Eub: Percentage of Dehalococcoides to total bacteria								
 Dehalococcoides existed in every well Percentage of <i>Dehalococcoides</i> was highest in the well with lowest ORP (highly reduced condition) 								
 Incubation of groundwater added with PCE exhibited degradation activity. 								
Natural attenuation must be occurring. Contamination was expected to disappear.								

Natural attenuation is considered to be occurring in the clay layer and adjacent aquifer using H_2 produced by a degradation of organics in the clay layer.

Monitoring is still on-going after removing the oil layer with high concentration of c-DCE.

REFERENCES

➢Roberts, P.V., Hopkins, G.D., Mackay, D. and Semprini, L., 1990, A field evaluation of in situ biodegradation of chlorinated ethenes: Part 1. Methodology and field site characterization. *Ground Water*, vol.28, 591-604.

Semprini, L., Roberts, P.V., Hopkins, G.D. and McCarty, P.L., 1990, A field evaluation of in situ biodegradation of chlorinated ethenes: Part 2. Results of biostimulation and biotransformation experiments. *Ground Water*, vol.28, 715-727.

Semprini, L., Hopkins, G.D., Roberts, P.V., Grbic-Galic, D. and McCarty, P.L., 1991, A field evaluation of in situ biodegradation of chlorinated ethenes: Part 3. Studies of competitive inhibition. *Ground Water*, vol.29, 239-238.

 Ground Water, vol.29, 239-238.
 >Eguchi, M., Kitagawa, M., Suzuki, Y., Nakamura, M., Kawai, T., Okamura, K., Sasaki, S. and Miyake, Y., 2001, A field evaluation of in situ biodegradation of trichloroethylene through methane injection. *Water Research*, vol.35, 2145-2152.

Pfiffner, S.M., Palumbo, A.V., Phelps, T.J. and Hazen, T.C., 1997, Effects of nutrient dosing on subsurface methanotrophic populations and trichloroethylene degradation. *Journal of Industrial Microbiology & Biotechnology*, vol.18, 204-212.
 >Takeuchi, M., Nanba, K., Yoshida, M., Nirei, H. and Furuya, K., 2004, Natural groundwater of a gas

➤Takeuchi, M., Nanba, K., Yoshida, M., Nirei, H. and Furuya, K., 2004, Natural groundwater of a gas field utilizable for a bioremediation of trichloroethylene-contamination. *Environmental Geology*, Vol.45, 891-898.

Takeuchi, M., Nanba, N., Iwamoto, H., Nirei, H., Kusuda, T., Kazaoka, O., Owaki, M. and Furuya, K., 2005, *In situ* bioremediation of cis-dichloroethylene-contaminated aquifer utilizing methane-rich groundwater from uncontaminated aquifer, *Water Research*, Vol.39, 2438-2444.

>Duba, A.G., K.J. Jackson, M.C. Jovanovich, R.B. Knapp, and R.T. Taylor., 1996, TCE remediation using in situ, resting-state bioaugmentation. *Envionmental Science and Technology*, vol.30,1982-1989.

>NPO, The Geo-pollution control agency, Japan: http://homepage1.nifty.com/npo-geopol/