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\World Carbon Dioxide Storage Options
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Major Coal Basins
PRINCIPAL COAL RESERVES IN CANADA
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Coal Resources Methane Resources
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IMethane Extraction from Coal Seams: Well Technology

Underground Methane Coalbed Methane
Drainage Practice Technology
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iCoal as a Reservoir Rock: Structure

Uniform and orthogonal fracture (CLEAT) structure

microcleat
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'Coal as a Reservoir Rock: Structure

butt cleat

002
290500
O,
g °o..% S
®lmicrocleat 2 50502°0| \05239%

Coal Matrix
containing
pores

Macropores > 50 nm adsorbed gas

Mesopores 2 — 50 nm

: freegas — '@
Micropores < 2 nm

Cleat system (2mm - 25 mm)

Rore surface area 20 — 200 m? CH,

L] )
APEC Seminar, AIST, Tﬂ(uba. 7 December 2007

Coal as a Reservoir Rock — Gas Retention
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'Coal as a Reservoir Rock:
EH, / CO, Retention in Coal - Adsorption Isotherm

75%CO, 25%CH

Gas Content (scft/tonne)
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nhanced Coalbed Methane Recovery (ECBM)

two principal methods of ECBM, namely N, and CO, injection
(inert gas stripping and displacement sorption respectively)

_ injection of nitrogen reduces the partial pressure of methane in the reservaoir,
* thus promotes methane desorption without lowering the total reservoir pressure

" coal can adsorb approximately two to six times as much CO, by volume as
methane, therefore, the assumption has been that the CO, injection stores 2-
6 moles of CO, for every mole of CH, desorbed.

CH, 7% moist. coal
75%C0O, 25%CH

N, 7% moistgcoal

Gas content (m3/t)

"4 6 8+10 12 14 16 b 2.8 4.2 5.6
f Pressure (MPa) Pressure (MPa)
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Tiffany

Tiﬁany Unit N2 Injection (Full Scale Commercial Pilot)

9 Years of primary production,

12 N, injector wells,
34 CH, production wells,
N, injection started in January 1998,
4-6 fold increase in production
s early N, breakthrough

Source: Reeves and Peckot, ARI, USCBM Symp, 2001
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McElmo Allison
Dome
CO, Field

urlington Resources Allison Unit CO, Injection

6 Years of primary production (1988/89 — 1995),

4 CO, injector wells,
9 CH, production wells,
CO, injection started in May 1995,
reduced CO, injectivity with time
No significant CO, breakthrough

Source: Reeves and Pecot, ARI, USCBM Symp, 2001

Alberta Research Council, Fenn Big Valley CO, Injection
Field micro-pilot testing started in 1997
coal swelling and reduced permeability observed

Source: Wong and Gunther, 1999
Law, Van der Meer, Mavor and Gunter 2000
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McElmo Allison
Dome
CO, Field

¢ Burlington Resources Allison Unit
CO, Injection
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'Coal Permeability and Gas Flow

“... contrary to what is usually supposed, solid coal is
. extremely airtight, and lets very little air or gas through,
even with a driving pressure of a whole atmosphere.”
Ivor GRAHAM, 1916

= “....that the rate of gas flow through the coal is a function of the
difference in partial pressure of methane along the flow path.
Therefore, the emission of méthane from a lump of coal is not
dependent on the total external pressure, but upon the partial
pressure of the methane inthe atmosphere and the pressure
fthe gas in coal.”

Ivor GRAHAM, 1919
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:Strength, Elastic and Flow Properties of Coal

Coal structure is highly elastic
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:Stress Effects and Permeability
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field Experience: San Juan Basin Field Permeability Behaviour

Pressure dependent permeability multiplier

k / ke = 800 psi)

100 200 300 400 500 600 700 800 900
Reservoir pressure (psia)

(after McGovern, 2004)
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'Pore Pressure Effects on Permeability: Matrix Shrinkage and Swelling
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" Primary and Enhanced Coalbed Methane

{ Recovery Permeability Model
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" Model for Changes in
oalbed Permeability During
Primary Recovery

k . koe—3Cf ((5—60) —Kk

A%
0 Z—E(IO— Po) + 30_v)

compaction term shrinkage term

. A
APEC Seminar, AIST, Tﬂ(uba. 7 December 2007

Eas(V —Vo)

Bundled matchstick model

og — shrinkage coefficient

/- adsorbed gas volume

E — Young’s modulus
v — Poisson’s ratio

Schematic Permeability Behaviour
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Model Validation: US San Juan Basin History Match

Walencia Canyon-Wells: Fairway B1 “boomer” Well:
Strong permeability rebound

history matched permeability
response curve at fairway B1
(Palmer and Mansoori)
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ermeability Model For Enhanced Recovery
= koe—3cf (0-09) Cleat permeability

'-..Primary recovery
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Imperial College in-house ECBM Simulator

IMETSIM2

3D two-phase Darcy flow in cleats, Fickian diffusion in

B maitrix (allows for bidisperse diffusion)

»multi-component gas mixture (CH,, CO,, N,)

atrix shrinkage/swelling effects one permeability

ixed gas sorption and diffusion

Xtended Langmuir model
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Nubari Field Pilot, Hokkaido, Japan

FIELD TEST SITE
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L Yubari Field Test

hree stages

BCO, injection huff-puff test (well
 IW-1, 7.5 tons CO,)

ulti-well CO, injection tests

s 2004 (16 days, 35.7 tons CO,)
r 2005 (42 days, 115.4 tons
. COy

flooding test

2006 N,-flooding (9 days, 32
tons N,)

2006 Pre- and Post-N,
looding CO, injection
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The 2004 & 2005 Year Multh Well Tests

\( Jl-'h'

Injection ‘e]* \ I

o

Frhe wtuct location of the wall was maisily defined by spatisl sostraints at the susface. The distance
o) ertirrdndnan

ta schseve the COZ hreakihrough
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CO, Injection and N, Flooding Test
Field Injection and Gas Production Rates

2004
» 15 days injection
%+ 1.8 - 2.9 tones CO,/day
(1 ton = 506 std. m?3)

‘=2005:
* 40 days injection
pe 1.7 — 3.5 tones/day

W production rates:
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Reservoir Simulation of the 2006 N,
‘Flooding Test

N, flooding: downhole tubing pressure

model BHP
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"Model Prediction vs Field Data:
re- and Post- N, Flooding CO, Injection Rates

%re-N, flooding
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N, flooding temporarily improved CO, injectivity,
which declined quickly back to the pre-flooding level
. (~ 3 tones/ day) after two days.
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Concluding remarks

Coalbed reservoirs have unique characteristics: storage,
transport and production mechanisms, permeability
behaviour.

I Considerable advances in the reservoir simulation of ECBM,
especially in permeability modelling have been made.

* While matrix shrinkage is desirable during primary recovery,
CO, matrix swelling can have a severe impact on coalbed
permeability and well injectivity.

Long term fate of injectéd CO, in coalbeds is uncertain, as
PO, especially at supercritical conditions, reacts with the
voir rock and fluids.
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