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Coalbeds as both the reservoir and source rock

OUTLINE

Retention and release of gas in coal

Coal permeability, dynamic permeability modelling in coalbed
reservoir simulation

Reservoir simulation of enhanced Coalbed Methane recovery and 
CO storage in coal seams
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World Carbon Dioxide Storage Options

Deep Ocean

Saline Aquifers

Unminable Coal Seams >15 Gt CO

Depleted Oil Reservoirs

Depleted Gas Reservoirs

Unminable Coal Seams        >15 Gt CO2 
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Source: USGS

Major Coal Basins
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Major Coal Basins

APEC Seminar,  AIST, Tsukuba, 7 December  2007

Major Coal Basins and Methane Resources
Continent Country Coal Resources Methane Resources

x 109 tonnes x 1012 m3

Europe and Belgium 0.075
the Russian France 0.600
Federation Germany 320 2.85Federation Germany 320 2.85

Hungary 0.085
Poland 160 2.85
Russia 6,500 17-113
Ukraine 140 1.7
UK 190 1.7

North America Canada 7,000 5.7-76
USA 3,970 11

Asia China 4,000 30-35
India 160 0.85

APEC Seminar,  AIST, Tsukuba, 7 December  2007

Indonesia 6
Kazakhstan 170 1.13

Australia 1,170 8.5-14

Africa 150 0.85

World Totals ~25,000 ~84 - 262
Source: ARI, 1992
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Underground Methane 
Drainage Practice

Coalbed Methane 
Technology

Methane Extraction from Coal Seams:  Well Technology

APEC Seminar,  AIST, Tsukuba, 7 December  2007

Coal as a Reservoir Rock:  Structure

Uniform  and  orthogonal fracture (CLEAT)  structure

APEC Seminar,  AIST, Tsukuba, 7 December  2007

microcleat
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Coal as a Reservoir Rock:  Structure

f l t

butt cleat

adsorbed gas

Coal Matrix
containing

pores

face cleat

Macropores > 50 nm

M 2 50

microcleat
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free gas

CH4

Mesopores 2 – 50 nm

Micropores < 2 nm 

Cleat system (2mm - 25 mm)

Pore surface area 20 – 200 m2

Coal as a Reservoir Rock – Gas Retention

butt cleat
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Coal as a Reservoir Rock:  
CH4 / CO2 Retention in Coal - Adsorption Isotherm 
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Enhanced Coalbed Methane Recovery (ECBM)
two principal methods of ECBM, namely N2 and CO2 injection 
(inert gas stripping and displacement sorption respectively)

injection of nitrogen reduces the partial pressure of methane in the reservoir, 
th t th d ti ith t l i th t t l ithus promotes methane desorption without lowering the total reservoir pressure
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coal can adsorb approximately two to six times as much CO2 by volume as 
methane, therefore, the assumption has been that the CO2 injection stores 2-
6 moles of CO2 for every mole of CH4 desorbed.  
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Underpressured:
Sw < 1.0

Underpressured:
Sw = 1.0
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Underpressured:
Sw < 1.0

Underpressured:
Sw = 1.0

Scale, miles
0 10 20

BP Tiffany Unit N2 Injection (Full Scale Commercial Pilot)

12 N2 injector wells,

34 CH production wells

9 Years of primary production,

Tiffany 
Unit

34 CH4 production wells,

N2 injection started in January 1998, 

4-6 fold increase in production

early N2 breakthrough

Source: Reeves and Peckot, ARI, USCBM Symp, 2001

Nitrogen Injection Suspended
100000
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BP Tiffany Unit N2 Injection 
(Full Scale Commercial Pilot)
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Source: Reeves and Pecot, ARI, USCBM Symp, 2001

Water Measurement Discrepency
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Burlington Resources Allison Unit CO2 Injection 

4 CO2 injector wells,

9 CH4 production wells,

6 Years of primary production (1988/89 – 1995),

Allison 
Unit

McElmo
Dome
CO2 Field

9 CH4 production wells,

CO2 injection started in May 1995, 

reduced CO2  injectivity with time 

No significant CO2 breakthrough
Source: Reeves and Pecot, ARI, USCBM Symp, 2001

Alb t R h C il F Bi V ll CO I j ti
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Alberta Research Council, Fenn Big Valley CO2 Injection

coal swelling and reduced permeability observed

Field micro-pilot testing started in 1997

Source: Wong and Gunther, 1999
Law, Van der Meer, Mavor and Gunter 2000

Burlington Resources Allison Unit 
CO2 Injection 

Allison 
Unit

McElmo
Dome
CO2 Field

APEC Seminar,  AIST, Tsukuba, 7 December  2007
Source: Reeves, ARI, Coal-Seq Forum, 2002
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Coal Permeability and Gas Flow

“… contrary to what is usually supposed, solid coal is 
extremely airtight, and lets very little air or gas through, 
even with a driving pressure of a whole atmosphere.”

Ivor GRAHAM, 1916 

“….that the rate of gas flow through the coal is a function of the
difference in partial pressure of methane along the flow path.  
Therefore, the emission of methane from a lump of coal is not 

APEC Seminar,  AIST, Tsukuba, 7 December  2007

, p
dependent on the total external pressure, but upon the partial 
pressure of the methane in the atmosphere and the pressure 
of the gas in coal.”  

Ivor GRAHAM, 1919

Strength, Elastic and Flow Properties of Coal

Coal structure is highly elastic
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Coal permeability is
• Anisotropic

• Highly stress dependent
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Stress Effects and Permeability
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Pore Pressure Effects on Permeability: Matrix Shrinkage and Swelling 
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Model for Changes in 
Coalbed Permeability During 
Primary Recovery
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Model Validation: US San Juan Basin History Match
Valencia Canyon Wells:  
Steady increase in permeability
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Imperial College in-house ECBM Simulator 
METSIM2

• 3D two-phase Darcy flow in cleats, Fickian diffusion in 
matrix (allows for bidisperse diffusion)

• multi-component gas mixture (CH2, CO2, N2)

• matrix shrinkage/swelling effects one permeability

• mixed gas sorption and diffusion

APEC Seminar,  AIST, Tsukuba, 7 December  2007

• extended Langmuir model

Yubari Field Pilot, Hokkaido, Japan

(after Fujioka, 2006)

APEC Seminar,  AIST, Tsukuba, 7 December  2007

• In a mountainous national 
forest area

• Bounded by four major faults
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Yubari Field Test 

Three stages

• CO2 injection huff-puff test (well 
1 CO )IW-1, 7.5 tons CO2)

• Multi-well CO2 injection tests
• 2004 (16 days, 35.7 tons CO2)
• 2005 (42 days, 115.4 tons 

CO2)

• N2 flooding test
• 2006 N flooding (9 days 32

APEC Seminar,  AIST, Tsukuba, 7 December  2007

• 2006 N2-flooding (9 days, 32 
tons N2) 

• 2006 Pre- and Post-N2
flooding CO2 injection • Well tests prior to the test and 

after 2004 CO2 injection
• 1 -> 0.08 md

Multi-well test: Production and injection rates
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Reservoir Simulation of the 2006 N2
Flooding Test

Simulated N2/CO2 injection wellblock 

N2 flooding: downhole tubing pressure
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Model Prediction vs Field Data: 
Pre- and Post- N2 Flooding CO2 Injection Rates
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N2 flooding temporarily improved CO2 injectivity, 
which declined quickly back to the pre-flooding level 
(~  3 tones/ day) after two days.
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Concluding remarks  

• Coalbed reservoirs have unique characteristics: storage, 
transport and production mechanisms, permeability 
b h ibehaviour.

• Considerable advances in the reservoir simulation of ECBM, 
especially in permeability modelling have been made. 

• While matrix shrinkage is desirable during primary recovery, 
CO2 matrix swelling can have a severe impact on coalbed  
permeability and well injectivity

APEC Seminar,  AIST, Tsukuba, 7 December  2007

permeability and well injectivity. 

• Long term fate of injected CO2 in coalbeds is uncertain, as 
CO2, especially at supercritical conditions, reacts with the 
reservoir rock and fluids.


