
HOW TO DEVELOP MATHEMATICAL THINKING
Shizumi Shimizu, University of Tsukuba

1. Thinking mathematically and mathematical thinking

(1) Idea of Mr. Kenzo Nakajima

Who introduced mathematical thinking into the Course of Study revised in 1958
as aims of mathematics in Japan. Creative activities to be good for mathematics nearly
equal to ‘thinking mathematically’ Mathematical thinking in the Course of Study
revised in 1958; aims of elementary school mathematics.
In the aims, mathematical thinking located in the two phases

# Mathematical thinking as results created by students
# Mathematical thinking as tools students use adequately

There was developing of a scientific attitude in the background.
Mathematical thinking as one point of view of evaluation (after 1970’s )

→ development of mathematical thinking
→ meaning of ‘development’ became ambiguous
→ need to realize the two phases of mathematical thinking again

(2) Idea of Mr. Shigeo Katagiri
His life work is to analyze and classify mathematical thinking from 1960’s
Mathematical thinking consists of mathematical idea, method, and attitude which
support thinking mathematically

2. Developing student’s mathematical thinking in classroom

(1) Putting student’s activities in the center of classroom and these activities to
be creative or inventive for students
A lesson (classroom) develops mathematical thinking by students’ problem solving.
Teachers guide and support their activities.

(2) Creative activities (problem solving) should be meaningful both for
students and teachers.
We try to analyze the elements and structures of mathematical thinking and to help
students acquire them.

3. Thinking mathematically

(1) Students’ independent activities
Engaging oneself, not other people’s activities

(2) Motivations and phases of activities
Engaging mathematical activities according to phases of them adequately

Motivations and phases

・from Need in life, Explanation of phenomena

→ Using mathematics
Considering or judging by using mathematics



・from Intellectual curiosity, Pursuit of mathematical beauty

→ Creating or discovering mathematics
Thinking creatively or extensively and discovering or inventing new facts,
skills, ideas etc. By relation with mathematics of experience by everyday life
and having learned already.

・Supporting using and creating mathematics, and from pursuit

conclusive evidence or enrichment
→ Explanation or verification

Necessity for understanding by oneself, persuading other peoples
sharing results each other, and refining them better

4. Observing classroom activities

5th grade sum of interior angles of polygons

5. Some points of view for improving math classes

(1) To help students make thinking mathematically a custom
(2) To represent students’ inner process of thinking mathematically
(3) Grasp results exactly from thinking mathematically or mathematical

problem solving
(4) Two adequacy for posing problem

・to be good for aims of lesson

・to lead results to be good for problem posed

(5) Problem posing and the result of solving the problem posed

・to consider the characteristic of problem; self-creating aspect

(6) Developing the mind of challenge, confidence, feeling of effectiveness
(7) Collaboration and creating

→ Japanese proverb; sann-ninn yore-ba monnjyu –no chie



How to develop Student’s Mathematical Thinking in Classroom

Objective: 1) To find and think about average 2) To develop mathematical thinking
and children’s image from surroundings.

Field note：

13:24～
T This is Japan’s map. Around country is sea,
I will give this to your teacher. Also these
color papers. I will give you a card with
Japan’s view.

13:30

T. I will stick this paper. Watch it carefully.
What it is?

C. Calendar
S. How to say Sunday?
C. Sunday…Saturday
T. I will hide somewhere.
C. It looks like Hospital sign.

T. Summary of Blue is bigger or Red is bigger?
Blue 3+7+14 Red 6+7+8
Almost C. answer Red is bigger than Blue

T. Why do you think so?
C. Cause it has 9 so it’s bigger
T. It has 3 numbers
T. I will ask you again. Summary of Blue is bigger
or Red is bigger?
Nobody answered Blue is bigger

C. Because Blue has 3, but red has 11
T. We will check it by calculate them

T. Had already learnt addition right?
T. Blue is 3+10+17 right?
T. Red is 3+10+17 right?
C. Wrong!!
T. Can you correct it?
C. 9+10+11
T. What is the answer?



C. Blue 30.Clap. Red 30.clap
T. Blue is 30. Red is 30. They are same.
T. How do you calculate the red one?
C. 9+11 is 20 then 20 + 10 is 30
T. Can you draw the lines?
T. Look it carefully. Do you have other way to calculate?
C. 3+10+17. 10+3 is 13 then 13+17 is 30

13:52

T. She/he calculates from left to right. But another he/she did the faster way to
calculate. It is easier to calculate, when we have three of tens. Can we do like this in
that one.
T. discuss with your friend
C. Draw the line 3 and 7 of 17
T. 10, 10, and 10 are 30
Both have there of tens

We can calculate faster if
make there of tens.
10 is central, inside the card.
If we can find this middle
number, we can calculate
faster.
T. I’ll change cards position.
What are summary of them?
Blue: 13+20+27 a lot
Red: 19+20+21 a little
Same: a little
T. Please. Calculate them.
C. Same
T. What it is?
C. 60
T. Writes the equation please.

14.02

T. It is really to be 60?



14.07
T. Is it possible to leave the central
number?
C. Yes. 19+20+21, 19+1 is 20.
20+20+20
T. What about blue one.
C.13+20+27, 3+7 is 10. 20+10 is 30
T. Good Job! It faster to calculate
when leaves central number.

14.12

T. If on the calendar, wherever we put
cards it will be same?
T. Anywhere you want to put cards?

C. 16+23+30

C 赤：

T 同じになる: 違う： 分から

ない：
T. I will take cards off and circle around,
instead.



WHERE DO MATHEMATICS PROBLEMS COME FROM IN 
ELEMENTARY SCHOOL CLASSROOMS? 

The Problem Solving Approach in the classroom: a dialectic with the 
conflicts and comprehension among students 

 
Masami Isoda, CRICED, Univertisy of Tsukuba, Japan 

 
The book (Isoda, 1996) was written to support elementary school teachers in Japan 
who plan lessons based on the Problem Solving Approach, which is a renowned 
approach for teaching mathematics around the world. According to mathematics 
education theory regarding lesson plan development or textbook sequencing, 
mathematics educators usually take account of the sequence of mathematical content, 
a range of situations including real-life examples, and mathematical representation for 
the process of abstraction. For example, one of those embedded in the textbook based 
on the ‘Model of, Model for’ framework by the Freudenthal Institute is ‘Mathematics 
in Context’, which includes the process of Situation, Model and Form through 
Mathematization. 
Across the world there are different textbooks, based on the local curriculum. 
However, most of these textbooks do not directly deal with students’ 
misunderstandings. On the other hand, Japanese elementary school textbooks and 
teachers’ guide include expected children’s answers for each problem and suggestions 
for how to treat children’s misunderstandings in class based on the experiences of 
lesson study. This is possible because the Japanese curriculum is national and 
textbooks are shared. When curriculums vary across different schools and classrooms, 
it is not easy to share these kinds of ideas. 
Many elementary school teachers and mathematic educators believe that mathematics 
problems arise from daily situations. Isoda (1996) discussed an alternative idea based 
on Japanese tradition that mathematics problems arise from problematic situations for 
children in special occasions during lessons that follow the curriculum sequence. In 
the Japanese Problem Solving Approach, known since the 1 960s, a problem situation 
is defined as confronting the unknown when compared to what has previously been 
learned. Problems posed within the teaching sequence, developed via curriculum 
planning, enable children to learn mathematics based on prior learning. What is 
theoretically new in this book (developed early 1990s), are the following. The book 
describes the source of problem situations through the process of extensions 
originated from the curriculum sequence; it explains the development of conceptual 
and procedural understanding through the learning of mathematics based on the 
curriculum sequence; and it likewise explains how to utilize dialectic discussion 
among classroom (Neriage), which involves each other’s perspective. 

 
Library data for your reference: 
Masami ISODA edited (1996), Problem-Solving Approach with Diverse Ideas and 
Dialectic Discussions: Conflict and appreciation based on the conceptual and 
procedural knowledge, Tokyo:Meijitosyo Pub. (written in Japanese) (English Ver.6 
for the Preparing Publication. Copyright ©Masami ISODA, CRICED, Univ. of 
Tsukuba. All right reserved) 
 
 



Chapter 1 
The Lesson Structure Based on a Problem-Solving Approach that Produces 

Diverse Ideas and Promotes Developmental Discussions: Focusing on the Gap 
between Meaning and Procedure 

The lesson planning based on the theory of understanding on curriculum sequence 
Masami Isoda, University of Tsukuba 

 
In an introductory lesson on adding fractions with different denominators that 

aims to teach children how and why they should perform calculations like 1/2 + 1/3, 
children who do not know the meaning of 1/2 L (ℓ) or 1/3 L cannot objectively 
understand the meaning of the word problem. Children who are not proficient in the 
procedures of reducing fractions to a common denominator, previously learned, will 
likely struggle with solving problems. Teachers will be well aware of the importance 
of meanings and procedures (including form and way of drawing) learned over the 
course of problem-solving lessons. 

The Japanese Problem Solving Approach usually begins from children’s 
challenges of a big problem based on what they have already learned. This chapter 
will use specific examples to show that previously learned meanings and procedures 
(form and way of drawing) help elicit a variety of ideas (conception) from children. 
Then it will describe methods of creating lessons that support children’s learning 
through the eliciting of diverse ideas (even if it is misunderstanding) and a 
developmental discussion (a dialectic among students). This is based on the notion 
that it is precisely when people are perplexed by something problematic that they 
develop their own questions or tasks, have a real opportunity to think about these, can 
promote their own learning, and can reach a point of understanding. The following 
aims to shed new light on the true significance of this notion. 
1.     It goes well! It goes well!! What? 

In Japan many teachers have experienced the following situation. The teacher 
finishes a class feeling confident that the lesson went well and believing that the 
children understood the material, but the children say “What? I don’t understand” in 
the very next class. The student comments clearly indicate that they had not 
developed a good understanding of the material previously presented, even if they 
said they had clearly understood it at that time. This is precisely the treasure secret of 
the problem-solving approach: to elicit diverse ideas including misunderstanding and 
promote developmental discussions. 

First, let us examine this approach by taking a look at a fourth grade class 
taught by Mr. Kosho Masaki, a teacher at the Elementary School attached to the 
University of Tsukuba (Sansuka: mondai kaiketsu de sodatsu chikara, Toshobunka 
1985). 
 
 
 
 
 
 
 
 



 
1-1. Fourth Grade Class on Parallelism Taught by Kosho Masaki 

To introduce parallelism,  
Masaki started by drawing a 
sample lattice pattern. The 
following process shows how 
children developed  the idea of 
parallelism in his lesson study.  
Task 1. Let’s draw the Sample 
1  lattice pattern  

All of the children were 
able to draw this lattice pattern 
by taking points spaced evenly 
apart along the edges of the 
drawing paper and drawing lines 
between them. “It went well!” 
Task 2. Let’s draw the Sample 
2  lattice pattern  

The children began to 
draw the pattern based on a 
diagonal line moving upward to the right. What kind of reactions do the children 
have? The results are varied and depict several different strategies. However, they can 
generally be categorized into the ways shown in Drawings A and B. 
 

Developmental Discussion: “What?”, What happened in Task 2?  
Masaki explained his problem solving approach as follows. In this (dialectic) 

situation, the children, even those who completed the task mechanically, were asked 
why they were able to draw the pattern in Task 1 but not the pattern in Task2. They 
were asked to try to find various ways in which to draw lines in order to reproduce the 
pattern shown in Samples 1 and 2. Because the children saw that others came up with 
results different from their own and everyone grew in confidence from their ability to 
draw the pattern, they began asking one another “How did you draw that?” and “Why 
did you think you could draw it by doing it that way?” They found it necessary to 
discuss their results. They began to distinguish between methods and to develop 
explanations. Through this developmental discussion, they were able to produce the 
word ‘parallel’ for what they had found based on what they had learned from others. 

When children become aware of the unknown – in other words, there is a gap 
in their knowledge or meet different ideas – they become confused and think 
“something is wrong.” This is then followed by a sort of conflict, leading to the 
questions “What?” and “Why?” Furthermore, when children enter developmental 
discussion (a dialectic) and are faced with ways of thinking that are unknown to them 
(knowledge gaps with others), it also causes conflict, forcing them again to ask 
“What?” and “Why?” Here again, they have to compare their way of thinking with 
that of others, evaluate it again by themselves and discuss their findings with other 
children. In this sequential flow, children make use of what they previously learned to 
turn the unknown into newly learned knowledge (a new understanding). This is the 
problem-solving approach discussed in this book based on conflict and understanding. 

Sample 1

Drawing A: Even intervals 
along the edges 

Sample 2

Way of drawing pattern 1

Using the right diagonal 
line as the base 

Drawing A: Even intervals
along the edges 



 
Here, one must ask why then did all the children feel that the drawing in Task 

1 had “gone well,” but in Task 2 two distinctly different types of drawing appeared. 
The reason lies in the diverse ways of thinking that appear in the sequence of tasks. In 
the next section of this chapter, we will clarify this using the terms ‘conceptual or 
declarative knowledge’ and ‘procedure (form and way of drawing).’ Then based on 
these terms, the sequence of tasks is analyzed again. 
 
1-2. Looking at Masaki’s Class in Terms of Meaning and Procedure 

Meaning (in this instance, conceptual or declarative knowledge) refers to 
contents (definitions, properties, places, situations, contexts, reason or foundation) 
that can be (re)described as “ ~ is ...” For example, 2 + 3 is the manipulation of 
‘004—000’. The meaning can also be described as: “2 + 3 is 0 04—0 00” and as such 
explains conceptual or declarative knowledge. In Mr. Masaki’s class, this method can 
be used to explain as follows: “The sample model is parallel lines.” It therefore 
describes the meaning, which subsequently becomes the foundation of creating 
conceptual or declarative knowledge regarding the parallelism of the sample model. 

Procedure (in this instance, procedural knowledge) on the other hand refers to 
the contents described as “if...., then do...” This is the procedure used for calculations 
such as mental arithmetic in which calculations are done sub-consciously. For 
example, “if it is 2×3, then write 6” or “if it is 2 + 3, then write the answer by 
calculating the problem as 0 04—0 00.” This is procedural knowledge. 

By doing this, you may say, “Oh, I see, the meaning is merely another 
expression of the procedure, that’s why they match.” Yes, that is true for those who 
understand that they do match. However, people do not immediately understand that 
they match. Even if they know that the sample models are graphs of parallel lines 
(conceptual knowledge), this does not mean that they can draw them (procedural 
knowledge). On the other hand, even if people can draw parallel lines (procedural 
knowledge), it does not mean that they understand the conceptual meaning 
(properties, etc) of parallelism. Cases when conceptual and procedural knowledge do 
not match are not only evident in mathematics classroom, but also in other facets of 
everyday life. For example, despite knowing their alcohol limit (conceptual 
knowledge), there are cases when people drink too much. Furthermore, it is this 
mismatch and contradiction that becomes the catalyst for the process in which people 
encounter a conflict, experience reflection, deepen their knowledge and gain 
understanding. 

Let us return to Masaki’s class. At 
first glance, the way of drawing pattern 1 
in the first task appears to be a general 
method for drawing figures. However, from  
the and B in task 2, it seems that the children  
confused the two procedures shown in the  
box. Even if the children produce the same 
problem, how they acquire conceptual and  
procedural (form and way of drawing)  
knowledge, and the use of that  
understanding and knowledge are many  

Way of drawing 1: Procedure a 
→Way of Drawing A; Task 2 

If you want to draw the model, draw lines spread 
perspective of the ways shown in Drawing A evenly 
apart from the top edge of the paper. 
Way of drawing 1: Procedure b 

→Way of Drawing B; Task 2 
If you want to draw the model, draw lines spread 
answer, the ways they understood the evenly apart. 

 



and varied. 
Based on analysis of the ways shown in drawings A and B, Masaki’s class is 

described by conceptual and procedural knowledge. 
 

The gap between the Sample model (conceptual knowledge) and the way of 
drawing (procedural knowledge): encounter a conflict 

• Thinking “hold on, I can’t draw this using procedure a; the lines cross 

over if extended, but as shown in the samples, the lines do not cross.” 

• “Why was I able to draw Sample 2 pattern using procedure b and not 

procedure a?” 

  Reviewing the way of drawing (procedure), and revising and reconsidering the      

  semantic interpretation of the Sample model, which acts as the foundation of the     

  drawing method. 

• “How did you draw that? Why did you think it would work out if you did it 
that way?” 

• Reason (coming from semantic interpretation of the Samples); lines in the 
Samples are  

    all evenly spread apart, so they don’t cross over. 
• “I tried to draw the lines spread evenly apart, but they crossed over. How 

should I do it?” 
• How do you properly draw lines spread evenly apart? By using the correct 

drawing  
method, which makes right angles and alternate interior angles evident. 

Elimination (bridging) of the gap between the semantic meaning and way of 

drawing (procedure): to a coherent understanding 

Taking into meaning (even spreading of lines, no crossing-over, and characteristics of 
right angles, corresponding angles and alternate interior angles), designation 
(definition) of parallel and drawing method (procedures including equal spread of 
lines, right angles, corresponding angles and alternate interior angles). 
 

Within the developmental discussion process, procedure b, in which lines are 
drawn equidistantly at all points, works for both Samples 1 and 2. In contrast, 
procedure a, in which the lines are drawn from the top edge of the paper, clearly 
works for Sample 1, but does not work for Sample 2. Because Sample 1 is contrasted 
with Sample 2, the meaning of equal spread of lines is connected to the method of 
drawing with attention to lines equidistant at all points, right angles, corresponding 
angles and alternate interior angles. As a result, the basis (meaning) of why that way 
of drawing was attempted is explained by the children’s comments. 

Naturally, Masaki anticipated and expected to encounter undifferentiated 
schematic interpretations and drawing methods on the part of the children, and as such 



planned his classes accordingly. The teacher does not start by teaching the meaning 
and way of drawing parallel lines he is familiar with, but in fact starts by teaching at a 
level which assumes that children have not yet learned the word ‘parallel.’ The 
teacher tries to make use of previously learned methods of drawing parallel lines 
(procedures) that the children already know. By confirming previously learned 
knowledge, the teacher instills a sense of efficacy through leading children to a 
successful completion of the task. Following that, the teacher then makes the children 
face the difficulties by questioning “What?” at times when it does not work well. Due 
to the conflict that arises, children then ask about the meaning of the parallel lines. 
The teacher aims to have the children create their own reconstruction of the method of 
drawing and the meaning, using what they already know as a foundation. 

Looking back, it can be seen that the flowchart presented on 
the right is embedded 
in Masaki’s class. As 
is indicated, the 
class is structured 
in such a way that 
the children 
proceed from a 
feeling that 
everything is 
“going well” to 
suddenly asking 
“What?”. This 
transition serves as 
the context in 
which a diverse 
range of ideas 
appears regarding how the children have understood the problem and what type of 
meanings and procedures they have acquired. This class is indeed a type which solves 
problems through developmental discussion (a dialectic) and makes use of a diverse 
range of ideas by overcoming the conflict of “What?” sorting through and clearing up 
previously misaligned meanings and procedures, and finally reaching a stage of 
understanding. 
 
2. Reading the children’s diverse range of ideas through meaning and procedure 
(form and way of drawing) 

For the planning of a lesson on the Problem Solving Approach, it is necessary 
to anticipate the diversity of children’s responses and plan a developmental discussion 
for studying the target of the lesson. This section shows ways of reading and 
anticipating children’s ideas using the words ‘meaning’ and ‘procedure (form and 
way of drawing).’ The theory of conceptual and procedural knowledge in 
mathematics education by James Hilbert (1986) is well known, and in Japan, 
Katsuhiko Shimizu applied a similar idea in classroom research (1986). Meaning and 
procedure for lesson planning theory has been developed by Isoda (1991) as an 
adaptation of cognitive theories to the progressive development of mathematics ideas 
within lessons. 

Dialectic Structure of Mr. Kosho Masaki’s Parallel 
 Confirming Previously Learned Knowledge
    Situation: Task 1 “It goes well”—Sense of Efficacy 

Even if gaps in meaning and procedures exist, they do not 
appear here. 

 Different Situation from Previously Learned Knowledge: Task 2 
There are children who show gaps in their understanding of 
meaning and procedure and some who don’t. 
“What?” – Conflict 
Developmental discussion (a dialectic) by questioning new 
meanings and procedures 

 Acquisition of a Sense of Achievement by Overcoming the Conflict 
and Proceeding through Understanding 



 

To begin with, we would like the readers to read once more the above-
mentioned explanation of meaning and procedure, and do the following exercise. 

 
 

 
 

 

 

 
 
 
 
2-1. What is meaning? What is procedure (form and way of drawing)? 
a. What is meaning? 

Meaning (conceptual knowledge) 
can be illustrated by “man is a wolf,” for 
example. Of course, a man is a  
human being, but by likening man to a 
wolf and changing the way of saying it, 
one can make a sentence that aims to 
express the meaning of “man.” The 
previous example “2+3 =004-000” gives a 
concrete example and changes the way it 
is said to express the meaning. The mathematical expression “3X2 =     2 + 2 + 2” also 
expresses meaning (in Japanese, 2X3 means 2 + 2 + 2). It is a rephrasing too. Such a 
rephrasing not only refers to a concrete example but also refers to what is already 
known. Note that the meaning of multiplication that children learn in the second grade 
can be summed up as shown in the figure above. The characteristics of the meaning 
are seen in the fact that a number of elements are connected like a net, and as such, we 
as teachers think that children can understand the meaning in more diverse ways when 
we are able to interpret like this. The important thing regarding diverse expression is 
that the meaning is in fact picked out and expressed through such rephrasing. 

In response to the problem “How many L and dL is 1.5 L?”, a student replied: 
“Before, we learned that 1 L is 10 dL, and that 1 dL is 0.1 L. If I use that, 1.5 L is 15 
parts 0.1 L. 10 parts 0.1 L is 1 L. The remaining 5 parts are 5 dL. So, 1.5 L is 1 L and 
5 dL.” When that child explained the basis of her reasoning, we as teachers can see 
that the child has made a deduction and explained it based on meaning. 

 
b. What is procedure? 

Procedure (procedural knowledge, form, way of drawing, method, pattern, 
algorithm, calculation, etc.) can be expressed as follows: “If the problem is to divide 
by a fractional number (recognizing conditional situations), then take the reciprocal of 
the divisor and multiply.” The first characteristic of procedure is being able to process 
automatically, without question, and instantly. However, proficiency (in other words, 
practice) is necessary. When answering the question how many dL are in 1.5 L, take a 

Exercise 1 
Which do the following correspond to: meaning or procedure? 
1. Reduction to the common denominator refers to finding the common 

denominator without changing the size of the fractional number. 
2. In order to compare the size of fractional numbers, either reduce or 

increase the fractional number size. 
3. In order to divide by a fractional number, take the reciprocal of the divisor 

and multiply. 

3 ×2 3 times 2 

2 + 2 + 2 2 as a unit Tape Chart

Three portions of 2



case where a student rapidly answers “1 L 5 dL.” If the student automatically follows 
the rule “if L is interpreted as L and dL, then focus on the position of the decimal 
point and think of L as coming before it and dL as coming after it,” then one could 
acknowledge that this student is using procedure. Being able to solve a problem 
instantly like this by using procedure means that we have come to a stage where we 
can find a solution without having to spend a lot of time deducing meaning, which in 
turn brings us to the point where we can consider reducing thinking time (e.g. short-
term and working memory). Another characteristic of procedure is that it produces 
new procedures such as the complex grouping of the four operations, as seen in the 
example of division using vertical notation (long division) whereby numbers are 
composed (estimating quotient), multiplied, subtracted and brought down (to next 
lower digit). If each procedure is not acquired, it is difficult to use complex 
procedures that incorporate some or all of them. In other words, if one becomes 
proficient, it does not matter how complex the grouping of procedures are, as one will 
be able to instantly use them. Simplifying complex deductions and being able to 
reason about a complex task quickly means that one is able to think about what else 
should be considered. 

 
c. The relationship between meaning and procedure 

As was shown in the method of drawing and the meanings of the patterns in 
Masaki’s class, there are instances when the meaning and procedure match (no 
appearance of gaps, consistency of use) and other instances when they do not match 
(appearance of gaps, inconsistency). In learning process through the curriculum or 
planned sequence, there are situations where the meaning and the procedure 
contradict each other and situations where they do not. Moreover, from the 
curriculum/teaching-learning sequence perspective, these two instances are mutually 
linked or translated as follows. 

Procedures can be created based on meaning (the procedurization of 
meaning, in other words, procedurization from concept). For example, when tackling 
the problem “How many L and 
dL is 1.5 L?” for the first time, a long process of interpreting the meaning is applied 
and the solution “1.5 L is 1 L 5 dL” is found. Additionally, this can be applied to 
other problems such as “How many L and dL is 3.2 L?” with the answer being “3.2 L 
is 3 L 2 dL.” Children soon discover easier procedures by themselves. 
Simultaneously, children realize and appreciate the value of acquiring procedures that 
reduce long sequential reasoning to one routine, which does not require reasoning. 

There is a remarkable way to shorten the procedure from known concept and 
procedure. The example, “if the problem is the division of fractional numbers, then 
take the reciprocal of the divisor and multiply” is shown in the diagram below. Using 
the previously learned concept of proportional number lines, the meaning of the 
calculation is represented and the answer is produced based on this representation. As 
a result of this representation, the alternative way of calculation ‘take the reciprocal of 
the divisor and multiply’ is reinterpreted so that it can be produced simply and quickly 
from an expression of division. Thus children reconstruct a procedure that can be 
carried out simply and quickly by reconsidering the result based on meaning. Even in 
a simple case such as the multiplication 2 times 3, this is 3 + 3 = 6 as a meaning, but 
as a procedure, 3×2 is interchangeable with the memorized result of 6. This 



remarkable way is also the procedurization of meaning. Many teachers believe that 
the procedure should be explained based on meaning, but the alternative is often 
preferred because it is much simple and easier. Using one of the key values of 
mathematics, namely simplicity, we finally develop procedure based on meaning. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The above is an example of how procedures can be created based on 

meanings. However, the reverse can also be achieved: meaning can be created based 
on procedure (meaning entailed by procedure, in other words, conceptualization of 
procedure). Let us consider this notion from the perspective of addition taught in the 
first grade and multiplication taught in the second grade of school. In the first grade, 
as in the operation activity where ‘  ← ’ means 3 + 2, children learn the 
meaning of addition from concise operations and then become proficient at mental 
arithmetic procedures (the procedurization of meaning). At that point, calculations 
such as 4 + 2 + 3 and 2 + 2 + 2 are done more quickly than counting, which is seen as 
a procedure. Further, in the second grade, compared with the case of several 
additions, only repeated addition problems lead to the meaning of multiplication. It is 
here that the specific procedure known as ‘repeated addition’ (now called 
multiplication) is incorporated into the meaning (meaning entailed by procedure). The 
reason such situations are possible is that children become both proficient at 
calculations using addition and familiar enough with the procedure to do it instantly. 
Children also see the meaning of  
a situation such as in the following picture showing three groups of objects. To find 

Meaning becomes the foundation for 
acquiring procedure. When children 
struggle to use previously learned 
knowledge, and if they employ a d 
versity of meanings for producing 
procedure, the importance of faster and 
easier procedures for obtaining answers 
will become clearer, as the alternative 
is to follow the difficult path of long 
reasoning. By debating diverse 
meanings in order to reason, children 
can clarify meaning and thus may 
recognize the situations for which the 
produced procedure is applicable. 
Procedure has the ‘if, then’ structure. 
The ‘if’ describes the conditions of 
applicable situations; when applicable, 
it is acceptable to carry out the ‘then’. 
Negotiating meaning is important for 
understanding applicable situations, 
even if it is very difficult to clarify the 
conditions for applicability without 
extension (the notion of extension is 
explained later). 

A 3/4m long iron bar 
weighs 2/5kg. How 
much does 1m of this 
iron bar weigh? 

Getting expression basen 
on the meaning of problem

Representation of Meaning 
Procedurization



 the total number of objects, it can be looked at as addition, giving 8 + 9 + 10, 
but by moving an object from the third 
group to the first, it can be looked at as 
repeated addition or multiplication, 
giving 3×9. Children unfamiliar with the 
procedure resort to learning addition and multiplication at the same time, which in 
turn make it more difficult for them to recognize that multiplication can be regarded 
as a special case of addition. 

Only people who have a good understanding of the meaning and the procedure 
use them as if they were one; they can be thought of as two sides of a coin, each of 
which has different features but together form the one coin1. On the other hands, from 
the curriculum sequence and its teaching-learning perspective, meaning and procedure 
develops mutually. Due to the fact that meaning can become procedure and vice versa 
in the teaching-learning process on the curriculum, only teacher can recognize the 
situation which meanings and procedures do not related mutually and plan how to 
develop mutual relationship. As this book aims to support teachers in their lesson 
planning, it is up to each teacher to decide what is meaning and what is procedure in 
each class in accord with the actual situation of the children and the classroom 
objectives. 

 
2-2. Using meaning and procedure (form and way of drawing) to anticipate 
children’s ideas 

In the problem solving approach, teachers anticipate children’s ideas in order 
to plan to develop their ideas using what is already known. Meaning and procedure 
support this anticipation2. 
a.    Knowing meaning and procedure allows you to anticipate children’s 
incomplete ideas 

Some months after learning how to divide fractional numbers, children are 
asked: “Why does that happen?” Many children reply “because you turn it upside 
down and multiply” (procedure), even though they could answer with meaning when 
they first learned well about it. This indicates that they lose meaning in exchange for 
procedural proficiency (proceduralization of meaning). Here we would like readers to 
answer Exercise 2, keeping in mind children who tend to forget the meaning. 
 
 
 
 

 
1 The metaphor is as same as Sfard but the idea itself developed originally at the 
publication in 1991 as a result of lesson study with elementary school teachers. She 
had pointed the same idea. 
2 In Japan, curriculum standards are fixed and textbooks are distributed by the 
government. One of the basic curriculum sequence and textbook contents sequence in 
Japan is ‘extension’ or ‘expansion’, that is, extending learned procedures to new 
situations. Depending on the situation, teachers can share children’s responses 
through the Lesson Study and teachers’ guidebooks, and at the same time, they can 
anticipate children’s reasoning and the process of discussion. 



 
A procedure that 

a child becomes 
proficient in is typically 
swimming or riding a 
bicycle; it is not easily 
forgotten, but meaning 
does not stay in one’s 
consciousness unless it 
needs to be used. The 
most common answer 
by children to the above exercise, as expected, is “4.2 m = 4 m + 2 cm.” In the third 
grade, children are taught to work as far as the first decimal point in small numbers. 
Therefore, when learning, children are usually only faced with units of 1/10 such as in 
L and dL, or cm and mm. Children who become able to quickly give the answer “1.5 
L = 1 L + 5 dL” only experience the situation where that procedure is applicable. As a 
result, they become unable to make semantic judgments on when that procedure can 
be used. 

The correct procedure “If ..., then...” will always produce the correct result as 
long as the conditional “if” part of the semantic judgment is correct. However, when 
children only experience applicable instances, they over-generalize the meaning and 
become unable to make a correct judgment. As a consequence, many children who 
use this so-called ‘quick/instant’ procedure may use it in cases where it does not 
apply. 

It should be noted that this quick response procedure is not only something 
that the teacher has taught, but rather is an extremely convenient idea that the children 
may have arrived at on their own. Even if this concept is invalid, children will not 
recognize this as long as they continue to be presented with tasks that do not show the 
weaknesses of the invalid concept. For example, even if children from Mr. Masaki’s 
class completed the first task using an invalid concept, the underdeveloped nature of 
the concept would not become apparent until it was applied to another task. 
Therefore, what the teacher should first recognize is a child’s idea created as his/her 
own. From there, the next step is to deepen that idea by investigating whether or not 
that idea can be generalized to other tasks. This is the challenge for teachers. 

 
 
 
 
 
 
 
 
 
 
 
 
 

   Exercise 2 Expressing a number with one denomination

       in a form that uses multiple denominations 
  A third grader with previously learned knowledge able  
to quickly give the answer “1.5 L = 1 L + 5 dL” is   
asked the following question: “4.2 m = how many m and   
how   many cm?” Anticipate the child’s reaction. 



 
b. Gaps between meaning and procedures appear in extending situations 

As presented at the beginning of this chapter, the steps “It goes well! It goes 
well! What?” are important. As long as everything goes well and is applicable in the 
end, the gaps between meaning and procedure will not become a problem. In such a 
situation, children are not faced with a difficult situation; they are within the range of 
previously learned knowledge, and have not yet been challenged by the unknown. 
However, a situation when something does not go well or when there is a need to 
close a knowledge gap is indeed one where true discoveries and creations are made. 
When a person thinks “What?” in a situation, this indicates issues that should be given 
genuine thought. An example of when things do not go well is the ‘extending 
situation.’’ In an extending situation3, the gap between meaning and procedure 
appears as diverse ideas. Here, let us look at the example of the extension of a 
procedure from whole numbers to decimal numbers. 

 
Example 1) shown on the right is an over-

generalized idea that can be seen in the decimal 
number calculation. It is usually explained as 
misunderstanding the meaning of place-value. 

Why does this type of idea appear? It arises because, when calculating with 
whole numbers using vertical notation as in example 2), the proper procedure is to 
write the numbers so that they are aligned on the right side. Example 1) indicates that 
the whole number procedure that was previously learned was applied. Having only 
experienced the calculation with whole numbers, the child is aware only of the 
procedure of aligning numbers on the right. Furthermore, the child has learned the 
procedure of right alignment through his or her experience of learning whole number 
calculation using vertical notation. 

The diagram on the next page illustrates the process of the extension of 
the application of the whole number procedure. With regard to the introduction of 
whole numbers in situation I, the procedure for aligning decimals matches the 
meaning of place-value (arrow A). When children become accustomed to this 
procedure, they forget the meaning of place-value and become proficient in 
quickly aligning to the right (II). In the domain of whole numbers, the meaning 
of place-value is not contradicted even if numbers are aligned to the right (arrow 
B). However, when children apply this procedure to decimal numbers (III), it 
contradicts the meaning of place-value as shown in 1) (arrow C). Therefore, 
when children are faced with an instance when the procedure does not apply, they 
become aware of the gap and must once again return to the meaning of place-
value. Then, they apply the procedure to both whole numbers and decimal 
numbers, and they become aware of the procedure of aligning decimal numbers 
as a procedure in accordance with the meaning of place-value. 

 
 
3 Extension (extending or expanding situation) is a basic principle of Japanese 
curriculum and textbook sequence in mathematics. Thus, over-generalization by 
students can be anticipated by the teacher. The examples here may not be 
particularly special even for those in other countries because the extension is 
normal sequence in school mathematics without axiomatic mathematics at the age of 



Align to the 
right and write 

(A)

New Math. 

Situation Meaning                          
Procedure Explanation Appropriaten

ess 
I 
Introduction 
of 
calculation 
in vertical 
notation 
using whole 
numbers 
 

 
 
 
 
 
 
 
 

The meaning of a 
decimal notation system 
is based on the procedure 
of keeping decimal points 
in alignment. (The 
meaning and procedure 
match) 

Appropriate 

II 
Becoming 
proficient 
in whole 
numbers 

 When children become 
proficient, they no longer 
need to think about the 
reason they follow that 
procedure. As a result, 
the procedure is 
simplified from the 
alignment of the decimal 
points to one of right-side 
alignment. 

Valid 

III 
Application 
of decimal 
numbers 

 The procedure for whole 
numbers is generalized 
for decimal numbers 

Inappropriate

 
Obviously, many children solve decimal number calculations using vertical notation 
through an understanding of the meaning of place-value. Thus the number of children 
who resort to the right-side alignment procedure is small. From the perspective of 
meaning and procedure, however, the way in which gaps in meaning and procedure 
occur tells us that there is a necessity in the teaching process to separate meaning and 
procedure into the following three categories. Children’s levels of comprehension are 
by no means uniform in the process of learning. Comprehension develops differently 
in each child. While there are children who are no longer aware of meaning because 
they have become accustomed to applying quick and easy-to-use procedures, there are 
also children who are aware of meaning and use it as a basis for the procedures. 
Because the conditions vary, a diverse range of ideas involving previously learned 
knowledge appears in situations (extending situations) (III) when easy-to-use 
procedures do not work. 
 
 
 
 
 
 
 

I) Deepening meaning: No appearance of gaps between meaning and procedure 
“It goes well!” 

II) Gaining an easy-to-use procedure from the meaning: Gaps are unrecognizable. 
“It goes well!!”  

Children become accustomed to easy-to-use procedures that work and many of them become unable to recall 
the meaning. 
III) Situation where easy-to-use procedures do not work: Awareness of gaps  

“What?” 

Decimal 
notation 
System 
meaning 

Write  2 3 
           + 5 

? 
(Forgotten) 

Align to 
the right 
and write 

(No meaning) 



 
The problems considered in Mr. Masaki’s class and in exercise 2, the practice 

of expressing a number with one denomination in a form that uses multiple 
denominations, are examples of extending situations (expansion). In an extending 
situation, the procedures and meanings that have been established will not work, 
which means that they will need to be reconstructed. Taking the above decimal 
number calculation in vertical notation as an example, the meaning of place-value 
works, but the right-side alignment procedure needs to be revised. Accordingly, the 
meaning of place-value needs to be reviewed, and the procedures used need to be 
revised to ones that align the positioning of the decimals in accordance with proper 
place-value notation. In short, as an educational guide, category III can also be 
described as follows: 
III’) Reviewing of meaning and revision of procedure: Elimination of gaps 

 
2-3. Diverse ideas can be classified by meaning and procedure 

Up to this point, we have focused on the most extreme over-generalized ideas 
(misconceptions) to indicate the occurrence and elimination (bridging) of gaps 
between meanings and procedures. Naturally, in actual classes a diverse range of 
ideas will surface, including correct and wrong answers. In order to plan 
developmental discussions, it is necessary to anticipate the type of diverse ideas that 
will most likely appear. Here, let us treat the children’s ideas as observations. For 
example, at the Sapporo City Public Konan Elementary School, Hideaki Suzuki’s 5th 
grade class looks at division involving numbers with 0 in the end places. This class, as 
was the case with Masaki’s class, first confirms previously learned knowledge of 
division when there is no remainder (task 1) and then moves on to the target content, 
which has yet to be learned: division when there is a remainder (task 2). The 
objectives of this class can be confirmed in the following discussion showing the flow 
of the class lesson (See next page). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Task 1. Known problem to confirm a previously learned procedure and the 

meaning it is based on:  Previously learned task.  

When children who have knowledge of basic division work out the answer to 1600÷400, 
the following is 

reviewed: 
4

0
1600
1600400  

Task 2. Unknown problem that seeks an application or expansion of the previously 

learned meaning and procedure: Target task.  

The target problem presented is 1900÷400, which presents a problem for some children 

and not for others as to how to deal with the remainder. As a result, the following ideas 

appear. 

 

a) Answer to the question using a procedure in which the meaning is lost. 
Apply A and make the remainder 3. Because the meaning is lost, the  
children do not question the remainder of 3. (Half of the 

class) 
b) Answer to the question when procedures have ambiguous 

meanings.  
Using A and B, the remainder was revised to 300. However,  
because the meaning was ambiguous, it was changed to 400.  
(Several students) 

c) Answer to the question when the procedure is ambiguous.  
A was used, but here a different procedure was selected by  
mistake. No students question the quotient 400. (Very few 

students) 
d) Answer to the question that confirms procedural 

meanings.   
Using A, an explanation of the quotient and remainders from 

the  
meaning of B and C. 

Why do answers differ? 

Where did you get lost? What did you have a problem with? A reminder of 

conflict through solving an exercise using your own ability. 

By reviewing the solution process, the basic meaning is reconfirmed and the procedure 
for dealing with remainders is learned. 
 

A. Take away 00 and calculate: procedure  
B. Explain A as a unit of 100 (bundle): meaning   
C. Substitute A for a 100 yen coin and explain: meaning 

d) 

c) 

b) 

a) 



First, the children 
grapple with Task 1, which 
they have learned before. 
The teacher links this task 
directly to Task 2 in the 
target content of the class, 
keeping the children’s 
solutions in mind. This is 
done by asking the children 
to confirm the procedure for 
the division using vertical 
notation, and asks them why 
it is not a problem to do this 
(meaning). Simultaneously, 
the teacher makes sure the 
children are able to explain 
both procedure and 
meaning. Following that, the 
children tackle target Task 
2, 
which requires them to deal with remainders. In Task 2, a variety of ideas (a-d) appear 
among children who are doing the work without complete knowledge of the meaning, 
and among children who are confirming the meaning while working on the task. 

The objective this time is to have a developmental discussion regarding the 
place-value of the remainder being adjusted to the place-value of the dividend. 

Here, it is important to have readers understand that the above approach is 
fixed in the class. It is worthwhile noting that even if meanings and procedures are 
previously confirmed, there is a diverse range of ways to process and implement that 
comprehension. As such, a variety of ideas appear. The starting point in the creation 
of diverse ideas lies in ways to process and utilize individually. 
When categorizing the variety of ideas above (a-d) by meaning and procedure, the 
following category types can be identified. These are developed with reference to the 
extension task that followed the known problem used to confirm previously learned 
knowledge. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Situation: confirming what they have already learned “It 
goes well”: Sense of Efficacy 
Mutual confirmation of meaning and procedure. 
Even if gaps in meaning and procedure exist, they 
do not appear here. 

Situation: different from what they have learned before— 
Conflict 

What?: the unknown due to an awareness of the gap 
with what they have already learned. 
Some students experience such gaps in meaning and 
procedure whilst some do not. 
What?: Surprise at the difference in ideas with other 
students and reflection on one’s own ideas. 
Developmental discussion that correctly redefines 
meaning and procedure. 

Acquisition of a sense of achievement, appreciation, by overcoming 
conflict and proceeding through to understanding 



 
Type 1. Solutions reached through the use of procedures without (or regardless 
of) meaning: Prioritize procedure without meaning. 

This is the above-mentioned idea a). It refers to an idea reached through 
consideration without much attention to meaning, even though the correct procedure 
(calculation) is applied. There are children who immediately change their ideas by 
recalling the meaning after having been asked to explain or after listening to other 
children’s ideas. However, most children substitute meaning with procedure and when 
they are asked for an explanation they usually reply by describing their procedure, 
saying “I did this, then I did that.” Prioritizing the procedure means that the children 
do not give careful consideration to the meaning; rather they tend to use quick 
procedures. 
(In the case of an already known task, and if we apply the correct procedure, the 
answer must be appropriate, but now we are discussing the case of the extension task.) 
Type 2. Solution reached through the use of procedures with meaning: Prioritize 
procedure with confused or ambiguous meaning. 

This type is composed of ideas b) and c). These students have the intention of 
confirming the meaning of the calculation procedure, but their idea includes their own 
semantic interpretation. Therefore, when getting to the core of their idea, it is found 
that their idea is one that contradicts the meaning and procedure they have previously 
learned. As a result, there are many instances in which their idea brings about 
confusion and unease. 
Type 3. Solution reached through the use of procedures backed by meaning: 
Secure procedure and meaning. 

As shown in d), when a solution reflects the appropriate meaning and has been 
learned as a procedure, there are no contradictions between procedure and meaning. 
 

Usually, when people are faced with a task they are unfamiliar with, the first 
thing they do is to test existing quick-to-use procedures in which they are proficient. 
This is what is referred to as the ‘prioritize procedure’ situation. If children believe in 
the situation that they got appropriate answere without considering meaning, then they 
are categorized as Type 1: ‘prioritize procedure without (or regardless of) meaning.’ 
In actual fact, there are many children who react to an unfamiliar task by prioritizing 
procedure without giving any careful thought to meaning. If children further 
investigate meaning when asked if the procedure they chose to implement is 
appropriate, and they show confusion and concern, they are categorized as Type 2: 
‘prioritize procedure with confused or ambiguous meaning.’ In contrast, a careful 
student who tackles a problem by always investigating the meaning and making sure 
there are no gaps will produce a result that has a secure procedure and meaning; they 
are categorized as Type 3. 

Although not shown in the above example, other ideas such as the following 
are also identified. 

 
 
 
 
 



 
Type 4. Solutions through meaning only: Prioritize meaning without procedure 
(or confused procedure). 
This type is seen when the procedure cannot be used appropriately or the student is 
not yet proficient in its use. Consequently, the solution is gained through thinking 
mainly about the meaning. As an example, consider the case where a student cannot 
calculate 1900 ÷ 400, but can answer if asked to solve the problem: “You have 1900 
yen. You buy as many 400 yen pencil cases as you can. So...” 
Type 5. Inability to find a solution due to insufficient meaning and procedure: 
No meaning or procedure. 
 
 

It is particularly important for teachers to keep in mind Type 5 children who 
are unable to solve a problem. In the case of Type 4 children, they can give many 
possible reactions in class, but in many cases there is no result when it comes to 
formal tests. In the case of 1st and 2nd graders, many Type 4 children give reasonable 
answers if they have a good understanding of the meaning, but children in higher 
grades will meet difficulties. When elementary school children reach the 5th and 6th 
grades, and even more so when they enter junior high school, there is an increase in 
textbook and course materials that require the procedurization of meaning. If children 
do not have procedure, it is impossible to develop the meaning entailed by the 
procedure. So it is very important to be aware that some children in Type 4 will move 
into Type 5 without proficiency of procedure. 

Here we would like readers to tackle the following problem regarding the 
meaning and procedural knowledge possessed by children from Katsuro Tejima’s 
class. 

 
Answers to Exercise 3 

As previously taught in the third grade, a fraction is interpreted as a number of 
parts of the equal (even) divisions of a whole, and in the case of the fraction of a 
quantity, “2/3 m is the same as two parts of three equal divisions of 1 m”. Fractions of 
one meter are learned only in the context of measurements of less than 1 m. This 
previously learned procedure tells children always to divide the whole number evenly 
and uses contexts in which the numerator never exceeds the denominator. The 
children’s thinking may then be characterized as follows. 

Exercise 3 The following is used in the introduction of fractional numbers for 4th graders. When 

asked to answer using fractional numbers for the length of a piece of tape, children’s responses fall

into one of three different types. Please explain what the children were thinking. 

Children’s 
reactions 

1m and 1/4m 



1. 5/8 m: the procedure was applied by making 2 m as one unit. This method is 
consistent with the procedure already learned; however these children did not 
recognize the contradiction inherent in obtaining a value less than 1. 
Accordingly, it illustrates Type 1: ‘prioritize procedure without meaning.’ 

2. 5/4 m: this answer was quickly found using the assumption that if there were 
three parts, each of which was 1/4 m, the total length would be 3/4 m, so that 
if there are five parts, the length should be 5/4 m (generalization of 
procedure). This contradicts the meaning and procedure children were 
previously taught, in which a numerator is smaller than denominator. Children 
who felt uneasy in this instance would be classified as Type 2: ‘prioritize 
procedure with confused meaning.’ Children who used the diagram to 
establish that 3 parts of 1/4 m becomes 3/4 m and so 5 parts becomes 5/4 m 
(meaning), but were then confused as to whether they could write that way 
because they had previously learned that the numerator cannot exceed the 
denominator (procedure), would be classified as Type 4: ‘prioritize meaning 
without procedure (or confused procedure).’ 

3. This answer shows that the children regarded the length as 1 m together with a 
further 1/4 m, obtained by subtracting 1 m from the total. As there is no 
discrepancy with what was previously learned, these children would be classified 
as Type 3: ‘secure procedure and meaning.’ 

 
This book focuses on lesson planning by teachers, and as previously mentioned, 

teachers ought to decide what the meaning and procedure are in their class material, 
and should provide appropriate educational guidance in accord with their teaching 
plan. It should be noted however that even when children are classified as the same 
type, their actual understanding, their thought processes and the ways they deduce 
meaning and procedure, may differ depending on the individual child and the 
situation. 

Before each lesson, it is necessary for teachers to prepare teaching material and 
plan the lesson on the basis of the required curriculum sequence. In aiming to support 
lesson planning, this book has identified the above-mentioned types as part of the 
teaching material research carried out by the teacher. The teacher will be able to 
prepare the following in accord with the categorization by types: anticipate what kind 
of ideas will emerge from children based on what they have previously learned; plan 
well-devised instructional content for the class based on these diverse ideas; and 
create ways of facilitating the instruction so that children are able to recognize what 
they do not understand and are then led to experience the joy of understanding. By 
anticipating children’s ideas and the causes of possible confusion, teachers will be 
able to envisage beforehand how they should develop their explanations and 
discussions. The categorized types provided are for the teacher to use in order to plan 
lessons for conceptual development, based on what the children have previously 
learned, using extending examples or situations. 
 



3. Planning for a Lesson with Developmental Discussion and Diverse Ideas 
This section will incorporate what has been covered in previous sections and 

will demonstrate how to implement the wide range of ideas children create and show 
how to run a developmental discussion (dialectic) in the lesson. As already 
mentioned, the developmental discussion is planned for special occasions during the 
teaching sequence. If the curriculum or textbook sequence includes extending 
mathematical ideas, we can expect contradictions to inevitably occur. In the problem 
solving approach, we aim to develop mathematical communication as well as 
mathematical conceptual development. Thus, in this book, we are quite positive in 
promoting such contradictions as objects for discussion in the mathematics classroom. 

 
3-1. Instruction planning in which a wide range of ideas appears by taking 
advantage of knowledge gaps 

Here, the ‘third grade decimals’ lesson conducted by Junko Furumoto 
(Sapporo Midorigaoka Elementary School) will be used as an example. When 
teaching fourth grade lessons on decimals, it is known that children tend to over-
generalize when they try to express a number with one denomination in a form that 
uses multiple denominations, as shown previously in Exercise 2. Ms. Furumoto 
recognizes this over-generalization as a gap that appears due to an extension of the 
procedure children have developed for dealing with numbers with only one decimal 
place to numbers with two decimal places. Accordingly, she has created the following 
lesson plan to take advantage of this gap and so add depth to her lesson on decimals. 
 
 

 
 
 
 

1st class: In what situations are decimal numbers used? 
The existence of decimal numbers. 

2nd class: How much juice is there? The need for decimal 
numbers (meaning). 
1/10 dL = 0.1 dL: decimal numbers are used to 
express amounts smaller than one unit (meaning) 

3rd class: Let’s make a numeric line based on 0.1: the size 
of decimal numbers 

4th class: Let’s get decimal numbers to introduce
themselves: practice with large/small numbers
and amount (meaning and procedure). 
“I am 2.8. I am a number made up of two 1s and 
eight 0.1s.” 

5th class: How much is 3.7 cm or 1.5 L: practice in use of 
single and multiple denomination numbers. 
Re-expressing single and multiple denomination 
numbers (meaning and procedure). 

6th class: There are two pieces of string: one is 4.2 m and 
the other is 4 m 10 cm. 
Which one is longer? 

It goes well! 

The meaning and 

procedure match. 

It goes well!! 

Procedurization, 

loss of meaning, or 

no loss of meaning. 

What? 

The occurrence of gaps. 



The first five lessons, each of which is one hour long, are designed to deepen 
the children’s understanding of the meaning of the first decimal place. In particular, 
the fourth and fifth hours focus on procedural proficiency (form) in terms of semantic 
interpretation. Up to this point, the method of instruction is standard. The sixth lesson 
is planned to make children wonder “What?” A diverse range of ideas appears as 
some children try to apply quick, easy-to-use procedures while others consider the 
problem using their understanding of decimal numbers, based on the example that 0.1 
equals 1/10 of 1. It is planned this way so that conflict will occur. Furthermore, this 
conflict is used to get children to re-evaluate the meaning of place-value, including 
those children that did not have an accurate understanding of the meaning of decimals 
in the first instance. 
The sixth class unfolds as follows: 
 

• Preconception: It’s 4.2 m! It’s 4 m 10 cm! 
How should I compare them? 
• The units are different, so if I don’t align them, I won’t be able to compare 
them. 
 
 
• For children who can’t solve this problem by themselves, the teacher makes them 
realize 
that they should use diagrams or the numeric value line they have previously learned. 
a) 4.2 m = 4 m 20 cm, so... b) 4.2 m = 4 m 2 cm, so... (majority of the students) 
c) 4 m 10 cm = 4.1 m, so... d) 4 m 10 cm = 4.10 m so... 
• Conflict: a) vs. b), c) vs. d). Is 0.1 m 10 cm or 1 cm? 
• Returning to the meaning: By converting the units to meters 
       (Using diagrams and number lines) 10 cm is 1/10 of 1 m, so it is 0.1 m 

4 m 10 cm = 4.1 m < 4.2 m 
By converting the units to cm 
0.1 M times 10 equals 1 m, so it is 10 cm  
4.2 m = 420 cm > 410 cm = 4 m 10 cm 
 
 
 

• Reaching understanding 
 
 

A wide range of ideas appear in answers a to d. Children chose answers a and c 
based on the meanings they had learned up to the fifth class: “0.1 m is 1/10 of 1 m” 
(classify as Type 3: ‘secure procedure and meaning’). Answer b may be the result of 
the quick procedure in the fifth lesson, which doesn’t work (classify as Type 1: 
‘prioritize procedure without meaning’). Answer d may be an example of Type 2: 
‘prioritize procedure with confused or ambiguous meaning’ if the children are 
confused as to why a contradictory expression that they do not understand appears. 
This is due to the fact that should they consider the quick procedure 4.2 m = 4 m + 2 
cm to be correct and actually write 4.2 m = 4 m 2 cm, they will also necessarily write 

What should you do so that you can clearly find out which 

If the units are different, then compare them by converting them 
(procedure)



4 m + 10 cm for 4.10 m. A similar case is where children wrote 4.10, because 1/10 of 
1 m is 10 cm. If the children are confused as to whether they can write 0 in the second 
decimal position, then they should be classified as Type 4: ‘prioritize meaning 
without procedure (or confused procedure).’ 

After the gap in ideas has been confirmed4, the class moves on to encouraging 
children who chose answer d (with a question about 4 m 10 cm being 4.10 m if 4.2 m 
= 4 m 2 cm), to consider the problem in the context of answer b, in order to return to 
the meaning of decimals they had previously learned, which is that 0.1 = 1/10 of 1. 
Through discussion, the quick procedure is revised and the procedure for converting 
the units becomes clear. Further, children’s understanding of the meaning of decimals, 
which observes a place-value of numbers, such as 10 cm = 0.1 m, is deepened. 

It is worth noting that even though the first five hours of lessons have placed 
heavy emphasis on amounts and meaning through the use of specific examples and 
number lines, a large number of children will choose answer b. As previously 
mentioned, when adults learn a quick procedure, they will try to use that procedure in 
the first instance. Children are no different. When children become aware of easy-to-
use procedures, many children are unable to recognize the semantics of the pre-
requisite ‘if...’ of the procedure (in the ‘if..., then...’ structure). Ms. Furumoto’s 
children would not have acquired even the easy-to-use procedures sufficiently without 
attending the sixth class. Accordingly, the aim of the sixth class is to deepen 
children’s knowledge regarding procedures that convert units and the meaning of 
place-value in decimal numbers by continuing to detect insufficient understanding and 
then revising the meaning. 

The diagram below shows a summary of the sub-unit construction mentioned 
above, focusing on meaning and procedure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4 The difficulty in understanding other’s ideas is that each of them is deduced from 
reasoning based on the different presuppositions depending on different 
understanding. In order to understand each other, it is necessary to reason based on 
others’ presuppositions or to identify the necessary presuppositions from which 
may be deduced other’s ideas. This point is focused on the third book 
(Isoda&Kishimoto 2005). 



  
I) Constructing meanings 

1st – 5th class: Matching meaning and procedure. No gaps become apparent. 
Specific amounts, number lines and diagrams are used to learn that 10x0. 1 

amounts to  
1 (meaning). 

II) Constructing easy-to-use procedures with meanings as the base 
Part of the 4th class: the following quick rewording is taught, “2.3 is made up 
of two 1s, and three 0.1s.” 
Part of the 5th class: Becoming proficient in procedure. Some students begin 
to lose the meaning of the procedure. 
5.3 cm = 5 cm 3 mm, 2.7 L = 2L 7dL can be re-expressed quickly. 

III) The situation of easy-to-use procedures not working: Extending the situation 
The meaning is reviewed and the procedure is revised 

6th class: the gap is exposed between the solution brought about from the 
procedure whose meaning has been lost and the solution that reflects the 
meaning. Then conflict occurs, leading to a review of the meaning of the 
procedure and a revision of the procedure itself. Through this, a new 
understanding is achieved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
* The discussion structure of section III includes the Hegelian meaning of the 
dialectic process through sublation. Here, Other’s different ideas are functioning 
antithesis. We will discuss this later. 
 
 

The climax of the sub-unit construction is section III. What is the process of 
reaching section III? First, in section I, procedures are learned while keeping meaning 
in mind. In section II, an easy-to-use procedure is acquired. As children become 
proficient in this procedure, some of them lose the need to consider meaning. In 
section III, they are faced with instances in which the easy-to-use procedure does not 
work. 

At the stage of solving problems by themselves before whole classroom 
discussion, each child may become confused because the easy-to-use procedures do 
not always work. When they participate in developmental discussions, conflict arises 

Children who apply the 
procedure from the 5th class. 
4.2 m = 4 m 2 cm 
Meaning loss from the 1st to the 
5th classes. 

Children who solve the problem using 
the meaning learned from the 1st to  
the 5th classes. 
4.2 m = 4 m 20 cm 
4 m 10 cm = 4.1 m 

The meaning of a place-value in decimal numbers is reviewed and acknowledged. Then the 
procedure for re-expression of numbers in different denominations is revised. 



regarding the difference in ideas held by other children. By experiencing that conflict, 
the meaning as a basis for supporting the procedure, which many children lost in 
section II, is once again recognized with a higher form of generality, and then the 
procedure is revised. 

The following describes the process of sub-unit construction in more general 
terms. 

 
 

 

 
 
As these cases show, due to the fact that the loss of meaning that accompanies 

procedurization occurs slowly, it is not always possible to differentiate between 
sections I and II. The major question is how to work towards the climax in section III. 
In other words, how do teachers teach in order to enable children to overcome the 
conflict? Looking back on the examples, the following two points, A) and B) must be 
necessary conditions. 

 
 
 
 
 
 

I) Deepening the meaning: when meaning and procedure match 

Here, meaning is deepened by being matched to procedure. 

II) Constructing easy-to-use procedures based on meaning 

Here, the ‘procedurization’ of meaning is developed and students 

become proficient in easy-to-use procedures. At that time, some 

students fail to remember the original meaning. Even in such cases, 

however, the procedure will continue to result in a correct answer 

and no gaps in understanding will become apparent. Therefore, 

students experience no confusion. 

III) A situation when easy-to-use procedures do not work; 

a review of meaning and a revision of procedure 

Gaps in understanding are exposed when some students use a 

procedure without keeping meaning in mind and others correctly 

solve the problem because they remain aware of the importance of 

the meaning of a calculation. This causes conflict, and after 

reviewing meaning and procedure, a new level of understanding is 

reached. 

The development of sub-units in which divers ideas appear 

It goes well! 

It goes well! 

Extending 

situation: What?



 
A) Posing tasks which, with poor understanding, will produce different answers. 

Tasks should be presented in such a way that there will be a conflict between 
children who forget or do not care about meaning in acquiring the easy-to-use 
procedure in section II and children who do keep meaning in mind. In order to do this, 
tasks must be presented in which  children will get stuck or there will be 
contradictions when easy-to-use procedures are applied in  extension situations 
without due care for meaning. These children may develop their own ideas  which 
should be changed, or they will need to reconsider the meaning.  
B) Preparation of meaning that will function as the ground for developmental 
discussion (a dialectic) and a basis for understanding 

For overcoming conflict due to difference in ideas (Hegelian sublation), it is 
necessary for the children to understand meaning (section I) because this meaning can 
be used as the basis for the developmental discussion. 
 
In fact, because conflict arises by posing suitable tasks (see part A), or in other words, 
children encounter results completely different from their own, they are able to ask 
“What?” or “ Why?” This allows them to reflect on their own ideas and take part in 
developmental discussions as they compare their ideas with those of others. 
Additionally, the mutual result from this confrontational developmental discussion 
makes the children produce a response to explain why they arrived at different 
answers. In the developmental discussion, part B is also necessary. The reason for this 
is that if the children cannot understand others, or if they cannot accept other’s ideas, 
or if they cannot reproduce other’s ideas, their discussion has no common ground as a 
basis on which to argue and talk at different purposes. If they have a basis for 
discussion, they can reflect on what others are saying. 

When children actually ask each other “Why?”, those children who resorted to 
the easy-to-use procedure (classified as Type 1: ‘prioritize procedure without 
meaning’) can do nothing but answer: “Last time 1.5 L was 1L and 5 dL, right? So I 
did it the same way for 4 m 2 cm,” or “You do not make 4 m 10 cm into 4.10 m (in 
other words, “You do not write it that way”) right?” Next, children who correctly 
applied the meaning to the solution began to talk about the basis (meaning) of the 
procedure by saying “0.1 m is 1/10 of 1 m, right?” By working out the difference in 
the meaning of place-value for a dL from the previous time and the relationship 
between meters and centimeters, the meaning becomes clear. The children who only 
applied the easy-to-use procedure, and were not conscious of the meaning, now 
become able to reproduce the correct results. Children who are satisfied with the 
meaning as discussed are able to revise their own ideas. 
 
3-2. Planning a one-hour class with confirmation of previously learned tasks 
to reinforce 

children’s knowledge and target tasks 
The method indicated for sub-unit construction is also useful for planning a 

one-hour class. That is, as previously discussed, it demonstrates how to structure a 
lesson that involves previously learned and target tasks. Here, we will explain Katsuro 
Tejima’s (Joetsu University of Education) introduction to fractions for fourth graders 
by way of meaning and procedure, and we will show the flow of his lesson structure 



(Ref: “Kazu-e-no Kankaku Wo Sodateru Shido,” Elementary School, University of 
Tsukuba).5 

 
Third grade 
3/4 Three parts of four equal divisions of a whole. 
3/4 m This is composed of three parts of four equal divisions of 1 m. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

First, Tejima revises the meaning of fraction learned in third grade, before 
improper fractions are introduced in fourth grade (see diagram above). Because “five 
parts of four divisions of 1 m” makes no sense, it is 
necessary to teach children about the way of 
looking at improper fractions as a collection of unit 
fractions. Also, he tries to utilize the gap between 
meaning and procedure that occurs in the children’s 
thinking. In the third grade, even when children 
study the meaning of “3/4 m is 3 parts of four equal 
divisions of 1 m”, there are children who learn it as 
the procedure: “if it is 3/4 m, then take three of the four equal divisions of the whole” 
because they only learn in the case of equal divisions of the whole. As a result of 
applying the procedure, 2 m is seen as the whole and the answer is given as 3/4 m. 

 

5 In Japanese elementary mathematics education, a fraction is first introduced via a 
situation such as dividing up a pizza or a cake. In this context, it is explained by the 
part-whole relationship (fraction without denominator). Second, a fraction such as 1/3 
m is introduced (fraction with denominator). In this context, the meaning of a fraction 
is extended from the part-whole relationship to the number line with the idea of a 
quantity. Thus the improper fraction 4/3 means four lots (four times) one third (one 
third as a unit fraction). Later, a fraction is recognized as the result of division (for 
example, the special case of decimal fractions). Finally, a fraction is recognized and 
interpreted as a ratio. The lesson by Masaki was given based on past curriculum 
standards (1980). In grade 3, a fraction is introduced as a relation between parts and a 
whole. Mixed fraction, Improper fraction, Proper fraction, and Unit fraction are taught 
in 4th grade. The sequence changed a little in 1999 standards. 

Extending Extending 

Fourth grade 
1 and 1/4 m... This is 1 m and one part of four equal divisions of the other 
1 m. 5/4 m This is five parts of four equal divisions of 1 m??? 

5/4 m.....Five times 1/4 unit 
(Five times one quarter) 
→ Collection of unit fraction 

3/4.....Three times 1/4 unit 
(Three times one quarter) 

5/4.....Five times 1/4 unit 
(Five times one quarter) 



He used the following structure for a single lesson that incorporates previously 
learned tasks and target tasks. The aim of the lesson is to bridge the gaps between 
meaning and procedure that children hold and to clarify misconceptions about the 
meaning of fractions. 

 
   Previously learned task 1: The teacher shows the children a 1 m long piece of tape 
and divides it     
   into four parts in front of them. He asks them: “How long is each part?”  
   C1: 25 cm, C2: 0.25 cm, C3: 4/100 m, C4: 1/4 m  

Previously learned task 2: After confirming that the length is expressed as the 

fraction 1/4 m,    the teacher says: “Today, let’s express the length of this tape in 

fractions.” He then cuts the tape into two pieces: 1/4 m and 3/4 m. As shown 

below, the teacher then asks: “How can we express lengths 

 
 
 
 
 
 
 
 
Target task: Next, the teacher takes out a piece of tape measuring 125 cm. He then 
says: “T, the length of this tape has a connection to the human body. What do you 
think it is?” Following this, the teacher develops the discussion by saying: “C, the 
length of both arms spread out. It is an actual fact.” He then says to the children, as 
indicated in the diagram below, “When S spreads his arms out, the length is over 1m. 
How can we say this length?” 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

A and B in words? First, let’s think of A as 1/4 m.” C5  This is one part of four divisions. 
 
C6  This is one part of four divided 

parts from 1 m. 

This is one part of four evenly divided parts from 1 m. 
 
This is three parts of four evenly divided parts from 1 m. 

Children’s 
reactions 

1 m and 1/4 m 
...... 14 

S’s arm length when 
spread out 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The above is an overview by Tejima. What would have happened if the 
teacher had begun the class by skipping the review of previously learned material and 
immediately used the target task? Since the target task is an extension of the previous 
material, a wide variety of ideas would appear. The developmental discussion would 
have gone out of control and continued in the same way if children had not shared the 
grounded meaning of Task 1 (see, Isoda, 1993). 

He knows that many children will come up with the answer 5/8 m before he 
plans the lesson6. The goal of this class is to make children aware of a new meaning 
of multiples of a unit fraction, so that this may serve as a basis for a procedure known 
as improper fraction representation, which will be covered in the next lesson. To that 
goal, it is necessary to emphasize to children the idea of aggregating a number of 
fractions of unit 1/4 m. (Children do not know about a fraction as a unit, or as a 
number on the number line). At the same time, it is also necessary to revise the 
misunderstanding of 5/8 m, which comes about from thinking of fractions as equal 
parts of a whole. In order to revise this idea, he reminds children to consider the 
length in Task 1 and asks the children if they can confirm that 25 cm = 0.25 m = 1/4 
m. In Task 2, he reviews the definition of fractions, confirms it and tests it in the  
 

 
 
 

 
6 In Japan, the results of lesson studies such as children’s ideas in the context 
of teaching on curriculum sequence have been well shared through teachers’ 
guidebooks and journals. Thus, teachers can expect children’s response before 
the lesson. 

The developmental discussion unfolds via a debate about tasks 1 and 2. 
C9 I think 5/4 m is strange. 
C1 0 It’s five parts of the four divisions of 1 m. 
C (to C9) That’s right./ I disagree. 
C11 I disagree. If you take the 1 m away, 1/4 m is left. 1 m equals 4/4 m, so if 

you put them
together, it’s 5/4 m. 

C1 3 5/4 m is strange because even though 1 m was split into 4 parts, the 
numerator is bigger
than the denominator. 

C14 There are one, two, three, four, five lots of 1/4 meters, so it’s 5/4 m. 
C1 5 If it were 5/8 m, then it would mean it was the fifth part of eight evenly 

divided parts of
1 m, but then it becomes smaller than 1 m, which is strange. Summary 

If it is 5/8 of 2 m, then that is correct. 
If 5/8 m is written with ‘m’, then it becomes smaller than 1 m, which is 
strange. It is five times the 1/4 m tape length, so 5/4 m is ok. 



target task by placing the 1/4 m and 3/4 m in the tape diagram on a number line in 
increasing order By creating this contextual flow, it is easy to become aware of “how 
many 1/4 m parts” there are, such as in the answer 5/4 m. Further, the idea of 5/8, 
which was obtained without meaning, is “5 parts of 8 equal divisions of 1 m.” This 
was obtained by applying the previously learned definition of fractional numbers. 
Children will realize that 5/8 m is smaller than 1 m. Here, counter-examples are 
effective: “5/8 m is smaller than 3/4 m, so it’s not right.” The developmental 
discussion was successful, as the meaning and procedure that form the basis of 
discussion had been confirmed in Task 1 and Task 2 before considering the meaning 
and procedure in target Task 3. 

In conclusion, the lessons of Masaki on parallelism, Suzuki on division and 
Tejima on fractions can all be summarized as shown in the flow chart below. 

 

 
 

 
 

Confirming and understanding the 
extended meaning and procedure. 

Reflection/ Summary 

Appreciation 
and sense of 
achievement 

Facilitate dialectic discussion based on meanings and 
procedures previously learned, and eliminated gaps. 

Aiming to 
eliminate gaps 
and conflict

Reproducing and 
reconsidering 
procedures  
How did you do 
that? 

Reproducing and 
reconsidering 
meanings  
Why did you think 
that way? 

Emotional Aspects  
What is confusing or troubling you?

“What?” and “Why?” 
In relation to how, asking 

themselves and others again 

Conflict 
Exposure of gaps 
in procedure and No meaning and procedure type

Prioritize meaning without procedure (or confused) type 
Secure procedure and meaning type

Prioritize procedure with confused or ambiguous meaning type 
Prioritize procedure without meaning type

Target (extending) Task Students become aware of the gaps and differences with knowledge 
previously learned: Concern, uneasiness and conflict 

Comparison 
to previously

learned 
knowledge  
“hmmmm,” 

“what?” 

Previously learned
Procedures and Meanings 

Recall, Confirmation and Understanding.

Previously learned (Known Task)

It goes well!! 
Sense of 
efficacy. 



  

In order to run a lesson to include such a flow, the following work (A-D) is necessary 
for its planning. 
 
A)   Investigate which stage of extension this class is at within the curriculum 
sequence, and what kind of changes are necessary regarding procedure and meaning 
to achieve the class goals. 
B)   Consider what types of target tasks are necessary to extend the material. 
C)   Anticipate what kind of reactions and gaps in meaning and procedure will appear 
when the children in the class tackle the target task, learned from previous situations. 
D)   Prepare tasks that review previous material to determine what needs to be 
covered in terms of meaning and procedure in order to perform the target task. This 
will also allow the creation of a basis for developmental discussion, which will 
examine what grounding of meaning is necessary for the elimination of gaps that 
appear during the target tasks. 
 

If the lesson is developed as a part of a unit or subunit plan for teaching such 
as Furomoto’s lessons on the decimal number, the first part of the lesson flow chart, 
that is, the previously learned task, can and often is put into the immediately 
preceding class in consideration of the above, and the lesson usually focuses on the 
remaining four parts: Target Task, Conflict, Eliminating Gap and Reflection. 
 
3-3. Developmental discussion to eliminate (bridging) gaps 

Upon reflection, developmental discussion takes place with the aim of 
eliminating conflict caused by gaps. 

 
 

Developmental discussion (a dialectic) that eliminates gaps in diverse ideas 
 

 
The reactions of children who
are no longer aware of the
meaning of the procedure Conflict

The reactions of children who 
remain aware of the meaning 
of the procedure  

   Children who are aware of the meaning of the procedure and children who are not 
aware of it contradict each other. Here, the discussion develops based on the ideas and 
concerns of children who have an ambiguous understanding of meaning or procedure. 
 
   In order to eliminate contradictions and gaps, it is necessary for children to persuade 
other children to revise their ideas. 
 

 
Considering what has been discussed so far, it is conceivable that 

developmental discussion will progress in the expected direction if the following two 
points are taken into account. 

 
 
 
 
 



 
1)     Consciously developing “Hmmm” and “Why?” 

When children are solving new problems by themselves, they become 
concerned and uneasy and think “Is it ok to do it like this?” This concern and 
uneasiness are manifested in children’s feelings when they find gaps in the 
meanings and procedures of previously learned tasks. However, once the children 
have successfully answered the task question, they feel better and forget these types 
of feelings. If children lose the desire to eliminate concern and uneasiness from 
within themselves, they cannot understand the complex ideas of others. Moreover, 
they are unable to take note of the viewpoint of others and revise their own ideas by 
sharing their opinions with their classmates. Children who ‘prioritize procedure with 
confused or ambiguous meaning’ or ‘prioritize meaning with ambiguous procedure’ 
often display this type of concern and uneasiness. Therefore, the use of such 
concerns and uneasiness makes it easy to access the benefits of developmental 
discussion. 
2)     Sharing understandings of meanings which will serve as the basis for the 

developmental discussion 
Mutual differences in procedures are exposed as gaps during the 

developmental discussion. In order to eliminate such gaps, children must talk about 
the meanings of the basis for each other’s procedures by asking: “Why did you 
think that way?” In addition, if they do not share or understand each other’s 
interpretation, they cannot revise their own procedures. 

 
 

Using the above two points as a premise, the following two points can be shown as 
measures to set up and summarize developmental discussion. 
 

a) Searching for a mutually recognized meaning to enable children to share a 
logical explanation as a base. 

b) Using other’s ideas even when recognized as inappropriate and deducing 
contradictions. 

 
It is fundamental for a developmental discussion to be planned with regard to point 

(a): It is necessary for mathematical explanation as a kind of mathematical proof. 
However, it is not easy for children to share the meanings. This is because it is 
difficult to respond when listening to another person’s comments. If children quarrel, 
a proper debate becomes hard to establish and those involved cannot break away from 
their own ideas and assertions. Here, the following teaching skills become necessary 
(see such as Kimiharu Sato, 1995). 
 
 
 
 
 
 
 
 



 
• When different ideas are outlined, give children time to reconsider why they think 

their idea is appropriate, so that they can explain why they think that way. 
   Example: Get children to write down their ideas regarding why they think 

that way. 
• Develop the points of confusion and concern as points of discussion in order to 

organize them within the developmental discussion. 
   Example: Ask children to comment on their points of confusion and 

concern. 
• Organize the points of discussion so that arbitrary comments do not cause the 

developmental discussion to get out of hand. 
   Example: “Try to say that again,” “Hold on, I understand what he/she said,” 
“That’s good.     
   Can someone rephrase it?” “Well, the points of discussion are on different 
levels now. Let me restate the problem.” 

 
Using these teaching techniques, the teacher encourages children to find 

meaning that everyone is satisfied with and ideas can be presented logically based on 
this meaning. In such a developmental discussion, point (b) above usually becomes 
necessary. In the first part of point (b), presuming that ‘the other person is right’ is a 
necessary condition for considering the other person’s perspective. In other words, 
what is the premise used to enable children to reach such a result? In order to reach 
this result, children are required to determine what premises the other children are 
basing their ideas on. However, it is not an easy task to reproduce another person’s 
ideas. In actual fact, when performing a task which exceeds the ‘if’ conditions of a 
procedure that works, it is not uncommon that more than half of the children 
misconceive the problem and use a procedure without any meaning. Among those 
children, some answer the way they do because they are unable to understand the 
reason for that meaning and seek to understand its basis. In that case, even if they 
listen to another person’s explanation, they cannot agree with the other person’s idea 
due to the fact that they are unable to understand what the other person is talking 
about, because they cannot understand the premise on which that person’s idea is 
based. When this happens, first it is necessary to make the children aware that failing 
to take the premises into account will cause confusion. A persuasive technique is to 
suggest that the person temporarily accepts the other’s idea even if it is very different 
from his/hers, continues to use the idea in another case, and then shows that it will 
contradict what they already learned before (the latter half of (b)). This is the Socratic 
dialectical method used since ancient Greek times, and is the origin of the reduction 
ad absurdum (reduction to absurdity) in terms of mathematics. In simply words, it is 
the production of a counterexample. If the other person does not understand it as a 
counterexample, it is not effective. Accordingly, the following section examines two 
methods that are effective in creating counterexamples. 

 
a. Waiting Counter Example on (b) for (a): What if A’s idea is correct? 

Here is an example. Hidenori Tanaka, a teacher at Sapporo Municipal 
Ishiyama-Minami Elementary School, is teaching fifth graders addition of 
fractions with different denominators using the example 1/2 + 1/3. Some of the 



children give the answer 2/5. This answer shows a student in the ‘prioritized 
procedure without meaning’. These children merely added the numerators and 
denominators of the fractions together, without understanding the meaning. 
Further, some children advocated the mistaken meaning by arguing ( ) + ( ) 
= ( ) (‘prioritizing procedure with confused or ambiguous meaning’). For 
children who think this explanation is correct, it shows a lack of understanding of 
fractions, since it is impossible to add fractions together which are in different 
units. For this reason, even if the children were able to understand their 
classmate’s explanation using a diagram, they would not understand why a 
classmate would say their own diagram explanation was wrong. What disproves 
their misguided understanding is the rebuttal, “So, have you ever added up 
denominators before?” According to this procedure, 1/2 + 1/2 = 2/4 = 1/2, and as 
the children see it, ( ) + ( ) = ( ). Looking at it this way goes against what 
has been previously learned. Accordingly, this type of refutation, which is not a 
straight denial of that person’s idea, uses their answer as an opportunity to critique 
their way of thinking, and is therefore quite convincing. 

 
 

b. Facilitating awareness through application of tasks in different situations and 
examples 

The excellent approach of asking “What if A’s idea is correct?” is that it 
makes use of A’s procedure without meaning. It includes the reasoning based on 
other’s saying for trying to share the grand of discussion (a). In doing so, it focuses on 
the contradiction in procedure that the student has used rather than the meaning he or 
she does not understand. The use of A’s procedure allows him or her to realize his or 
her own misconception of the procedure. This is the same method seen in Tejima’s 
class. 

However, there are also times when a contradiction needs to be indicated in 
new tasks in the case, a counter example is not clear for students or not given by 
students and a teacher does not show it.7 Here, we present a following example of this 
method using a third grade fraction class run by Mikiko Iwabuchi, a teacher at 
Sapporo Municipal Kitasono Elementary School in Sapporo. In this example, a shift 
from fractions as equal parts of a whole to fractions as quantities on the number line 
(unit fractions) is planned. 

In this planned lesson sequence (see next page), the meaning of fractions as 
equal parts of a whole is used as a basis for defining fractions as quantities in their 
own right. This definition creates a shift in meaning from “n parts of m equal 
divisions of the whole” to “n parts of m equal divisions of a unit quantity.” Up until 
the second lesson, children have only studied fractions as equal parts of a whole, so 
there are various discrepancies in the semantic interpretation of the answer as 1/4 m in 

 
7 If children well educated enabling to change the parameters on the problem by 
themselves and children have rich custom to explain their idea with the words 
‘for example’, posing counter example by children is not rare case in elementary 
school classroom (See such as Tanaka 2001). Even if there is a child find the 
counter example against the answer, it is not always understandable for other 
children. 



the third class. The students answers are wide ranging.8 Debate arises among the 
children, and as expected, conflict is seen between those who chose answer B and 
those who chose answer C. In particular, as 1/4 m is read as ‘1 of 4 parts’ m in 
Japanese, it is easy for the children to arrive at the idea that the number is four times 
the standard 1 m. As an idea to support C, one child claimed “it should be shorter than 
the original length” to make use of the meaning studied of fractions as equal parts of a 
whole. Another is the indication expressed in the comment: “If 1/4 m =1 m, you 
should say 1 m, otherwise it’s strange.” However, because the meaning of 1/4 m is 
undefined and discrepant, the children listening others will not be able to make sense 
of it. Therefore in the fourth class, the children are asked about the case of 1/2 m by 
the teacher. If B is correct, 1/2 m = 1 m and 1/4 m = 1m, and so you would have “1/2 
m = 1/4 m,” which again is strange, and a debate centering on “it should be shorter in 
the order of 1/2 m, 1/4 m, 1/10 m,” would occur from the perspective of what was 
learned about fractions as equal parts of a whole. In other words, a conclusion that 
answer C is correct can be reached because the meaning and logic of fractions studied 
in the second class does not match answer B from the first class. 

 
  1st lesson: Halves... dividing equally... introduction of fraction as part-whole 
relationship using  1/2.        
         It goes well! 
  2nd lesson: “Let’s make 1/4.” Using fraction as parts of a whole. It goes well! 
  The teacher asks children to make a 1/4 size piece of colored paper and tape to send 
to their sister school, Astor Elementary, for its music festival. 
  3rd lesson: “Let’s make 1/4 m.” Introducing fraction as a quantity. What? 
  The teacher wants the children to cut a 1/4 m length of tape to send to their sister 
school’s festival.    
  They must make sure the measurement is right. 
  A)   The original size of the tape can be any size, so if the whole length is not given, 
it is not set. (2 children: ‘Prioritize procedure with confused or ambiguous meaning.’) 
  B)   4 m is divided evenly, each piece is 1 m. (16 children: ‘Prioritize procedure with 
ambiguous or no  meaning.’) 
  C)  One piece from 1 m is divided evenly (25 cm). (19 children: ‘Secure procedure 
and meaning  type.’) 
  4th lesson: ‘Let’s make 1/2 m.” Introducing fraction as a quantity (continued from 
the 3rd lesson). 

 
 
 
 
 
 

 
8 Here, when the meaning matches the definition, it is classified as ‘secured meaning; 
however, as this is at a stage before definition, it does not mean that others are 
misconceptions. 

Based on the above discussion, the second chapter will show the practice of 
developmental discussion classes that lead to the creation of diverse ideas.. 



Notes & References in 1996 Japanese version. 
From the viewpoint of academic research, the following is an explanation of 

the research path, its position in mathematics education, as well as the reference 
materials used in making this book. 

In the early 1980s, it can be said that the theoretical framework for the 
problem solving approach, as it is now known in Japan, had already developed. In 
actual fact, the contents provided at that time, do not differ much from the research 
that had been done after constructivism became a significant issue for debate in the 
mid 1980s. Furthermore, as far as teaching practice is concerned, the level of lessons 
run by teachers using problem solving techniques in Japan ranks very highly, even 
from the perspective of constructivists. For example, Jere Confrey (vice-chairperson 
of International Group for the Psychology of Mathematics Education in 1995, when th 
book was written), a leader in the field of sublation of radical constructivism and 
social constructivism, has given a high evaluation of the idea as a constructivist 
approach in the lessons. 

However, in the early 1980s and 1990s, there was a gap. For example, in the 
early 1980s, the discussion of diverse ideas was in terms of the diversity of correct 
ideas with open-ended problems. One factor that changed that trend was research 
about understanding. This chapter has been written to include the way to describe the 
phases of understanding – conceptual knowledge and procedural knowledge theory – 
as of the context of research on understanding, as well as to show the theoretical 
aspects of the problem-solving lesson and teaching practice of teachers from Sapporo. 

The following papers act as a framework for this chapter. 
 

Masami Isoda (the author), “Katto to Nattoku wo Motomeru Mondai Kaiketsu Jugyo  
      no Kozo,” Riron to Jissen no Kai Chukan Hokokusho, 1991 
 
I have studied much from the following researchers in order to acquire my theory: 
      Toshio Odaka & Koji Okamoto: Chugakko Sugaku no Gakushu Kadai. Toyokan  
      Publishing Co., Ltd., 1982 
Tadao Kaneko: Sansu wo Tsukuridasu Kodomo. Meijitoshoshuppan Corporation,  
      1985 
Katsuhiko Shimizu: Sugaku Gakushu ni Okeru Gainenteki Chishiki to Tetsuzukiteki  
      Chishiki no Kanren ni Tsuite no Ichi-kosatsu. Tsukuba Sugaku Kyoiku Kenkyu,  
      1989 (co-authored with Yasuhiro Suzuki) 
Katsuro Tejima. Sansuka, Mondai Kaiketsu no Jugyo. Meijitoshoshuppan  
      Corporation, 1985  
J. Hiebert. Conceptual and Procedural Knowledge: The Case of Mathematics. LEA,  
      1986 
Toshiakira Fujii. Rikai to Ninchiteki Conflict ni tsuite no Ichi-kosatsu. Report of  
      Mathematical Education, 1985 
 

The originality of this book lies in the following areas: applied a descriptive 
research method of children’s understanding in psychology to lesson material and 
planning; and, applied the viability of knowledge on constructivism to the developing 
problem situations due to gaps in procedure and meaning that come about from 
extending and generalization on curriculum sequence. 



James Hiebert, who is known as the conceptual and procedural knowledge theory, has 
appraised these applications. 

Below are the references and contents that could not be included in the book 
although they too are worthy of use in this context. 

 
Author’s material: 
Sansu Jugyo ni okeru Settoku no Ronri wo Saguru, Kyoka to Kodomo to Kotoba.  
      Tokyo Shoseki Co., Ltd., 1993. 
Miwa Tatsuro Sensei Taikan Kinen Ronbun Henshu-iinkai-hen. Gakushu Katei ni  
      Okeru Hyougen to Imi no Seisei ni Kansuru Ichi-kosatsu, Sugaku Kyouikugaku no  
      Shinpo. Toyokan Publishing Co., Ltd., 1993. 
Sugaku Gakushu ni Okeru Kakucho no Ronri – Keishiki Fueki to Imi no Henyo ni  
      Chakumoku Shite. Furuto Rei Sensei Kinen Ronbunshu Henshu-iinkai. Gakko  
      Sugaku no Kaizen. Toyokan Publishing Co., Ltd., 1995 
Mondai Kaiketsu no Shido. Shogakko Sansu Jissen Shido Zenshu 11 Kan, Nobuhiko  
      Noda (Ed). Mondai Kaiketsu no Noryoku wo Sodateru Shidou. Nihon Kyouiku  
      Tosho Center, 1995 
Kimiharu Sato. Neriai wo Toshite Takameru Shingakuryoku. Kyouiku Kagaku,  
      Sansuu Kyouiku September 1995 issue 
 

In Japanese original version of this book, some words are used with special 
meanings even if in Japanese. For example, the phrase ‘developmental discussion’ has 
been used to describe the aim of restructuring meanings and procedures that children 
have through dialectical conversations with them. Furthermore, from the standpoints 
of ‘if there is nothing extraordinary, then the idea cannot be truly tried or structured’ 
and ‘extending the concept cannot be done without the risk of over-generalization,’ 
we replaced the word ‘error (Ayamari in Japanese)’ with ‘over-generalized idea (Kari 
but read Ayamari in Japanese)’. This is in line with the meaning of misconception and 
at the same time is used in the background of an alternative framework on the theory 
of constructivism. 

 



  
 

TEACHERS’ MATHEMATICAL VALUES FOR DEVELOPING 
MATHEMATICAL THINKING TROUGH LESSON STUDY 

 
Alan J. Bishop 

Monash University 
 
1. Mathematical thinking from a sociocultural perspective 
 
Mathematical thinking sounds like an essentially psychological topic. It is just another 
branch of thinking, and therefore part of the psychological field of knowledge. 
However, we can never observe mathematical thinking - we can only observe what 
we assume to be its products, namely mathematical ideas and processes. We can also 
observe what conditions and contexts might have been responsible for the products of 
mathematical thinking, which brings us rather closer to the social context. 
 
So what is the problem we are trying to consider here? In one sentence the major 
problem seems to be: “How can teachers help mathematical thinking to develop in 
their students?” A subsidiary problem is “How can research on values help with this?” 
Because of my research work in the field of mathematics education, I prefer to 
consider mathematical thinking not from a psychological perspective but from a 
socio-cultural perspective. 
 
2. Three theoretical ideas 
 
In trying to make research progress in solving the problem of helping mathematical 
thinking develop, I believe we need to consider carefully any theoretical perspectives 
which might assist us. I will present here three theoretical ideas which I have found 
helpful in my research and which I believe can shape our understanding of the 
problem and lead to potential pedagogical solutions. These ‘solutions’ can then be 
researched using the Lesson Study method – but more about that later.  
 
2.1 Lancy’s developmental theory of cognition  
 
David Lancy (1983) is a cultural psychologist who, in his major cross-cultural study 
in Papua New Guinea, developed a new stage theory of cognition. It was based on 
Piaget’s theories but he developed them from a socio-cultural perspective. He was 
doing his research in Papua New Guinea and through investigating cognition with 
students in PNG, he found that the theoretical developmental sequence of Piaget’s 
stages were similar to, but not identical with, those Piaget found in his European-
based research. 
 
He found that Stage 1 was very similar to Piaget’s sensory-motor and early concrete 
operational stages. He argued that this stage is where genetic programming has its 
major influence, and where socialisation is the key focus of communication. Many 
activities involving the child are completely similar across cultures.  
 



  
 

He then argued that Stage 2, a later concrete operational stage, is where enculturation 
takes over from socialisation. As he says: “Stage 2 has much to do with culture and 
environment and less to do with genetics”, and he demonstrated that this is the stage 
where different cultures will emphasise different knowledge and ideas. Even in 
relation to mathematics (which is where ethnomathematics develops) this is the case..  
 
The big development in Lancy’s theory from Piaget’s is seen in Stage 3 which 
concerns the meta-cognitive level. Lancy says: “In addition to developing cognitive 
and linguistic strategies, individuals acquire ‘theories’ of language and cognition.” 
Different cultural groups emphasise different ‘theories of knowledge’ and Piaget’s 
‘formal operational’ stage is one such theory of knowledge emphasised in Western 
culture. Confucian Heritage Cultures emphasise other theories of knowledge. These 
theories of knowledge represent the ideals and values lying behind the actual language 
or symbols developed by a cultural group.  
 
Thus it is in Stages 2 and 3 that values are inculcated in the individual learners. In a 
classic work by Kroebner and Kluckholm (1952) they strongly support this idea: 
“Values provide the only basis for the fully intellible comprehension of culture, 
because the actual organisation of all cultures is primarily in terms of their values”   
(p. 340). 
 
Thus for our problem, the idea of mathematical thinking as a form of meta-cognition, 
affected by the cultural norms and values of the learner’s society, is helpful.  
 
2.2 Billett’s (1998) analysis of the social genesis of knowledge.  
 
But where do these norms, values and knowledge come from, and how can we think 
about them from a more educational perspective? Stephen Billett’s (1998) 
sociological work analyses and locates what he calls “the social genesis of 
knowledge” in 5 inter-relating levels: 
 
Socio-historic knowledge factors affect the values underpinning decisions made by 
both institutions and teachers. It is knowledge coming from the history and culture of 
the society, and is value-laden knowledge. 
 
Socio-cultural practice is defined by Billett as historically derived knowledge 
transformed by cultural needs, together with goals, techniques, and norms to guide 
practice. At the institutional level these are manifested by curricular decisions 
influenced by such factors as: (a) current institutional management philosophy with 
respect to educational and social values (in loco parentis); (b) State or national 
curricular frameworks and (c) the ethos of the mathematics faculty or teacher’s peer 
group. 
 
The community of practice in the classroom is identified by Billett as particular socio-
cultural practices shaped by a complex of circumstantial social factors (activity 
systems), and the norms and values which embody them. This community is 



  
 

influenced by (a) the teachers’ goals with respect to and portrayal of pedagogical 
values, (b) students’ goals and portrayal of learning values, and personal values. 
 
Microgenetic development is interpreted by Billett as individuals’ (teachers’ and 
students’) moment-by-moment construction of socially derived knowledge, derived 
through routine and non-routine problem solving. The nature of teaching as a 
profession is reflected in the relative autonomy assumed within the walls of the 
classroom, where teachers’ decisions are constantly being made or revised on the 
basis of a continuous flow of new information. The instantaneous nature of many 
decisions is likely to be influenced to a greater or lesser extent by the teacher’s 
internalised sets of values. 
 
Ontogenetic development includes individuals’ personal life histories, socially 
determined, which furnish the knowledge with which to interpret stimuli; this 
development includes participation in multiple overlapping communities. 
 
This analysis points to the different sources of influence on teachers’ values. Billett’s 
categorised knowledge is a powerful indicator of how different knowledge at these 
five levels can impinge on and influence teachers’ values in the classroom.  
 
2.3 Bishop’s (1988) socio-cultural dimension and its levels 
 
My research context has been in the field of culture, and especially with considering 
mathematics as a form of cultural knowledge. When we are considering how to 
develop values in relation to mathematical thinking, I also believe we need to keep in 
mind the socio-cultural dimension of mathematics education. This dimension 
influences the values of mathematical thinking at five levels, which are similar but 
different to Billet’s levels.  

1. Cultural level – the overarching culture of the people, their language, their 
mathematics, their core values. In Billet’s levels he combined together the 
cultural and the societal, which I believe in the case of mathematics education 
is not helpful. Evidence from research at the cultural level shows how 
different ethnomathematical ideas are not necessarily related to similar 
societal structures. Ethnomathematics points to cultural influences on 
mathematical thinking. 

2. Societal level – the social institutions of the society, their goals, and their 
values regarding mathematics. In many societies mathematics education is a 
contested field with many proponents of different educational ‘solutions’ 
vying for publicity and academic advantage. They inevitably affect what is 
considered to be important mathematical thinking, and who is capable of 
doing it.  

3. Institutional level – the educational institutions’ values and the place of 
mathematics within them. At this level we can see the ways institutional 
values influence the curriculum, the timetable and even the allocation of space 
to each subject. These values also affect the development of mathematical 
thinking in different groups of students.  



  
 

4. Pedagogical level – the teachers’ values and decisions, the classroom culture 
of mathematical thinking. This is the same level as Billett’s ‘community of 
practice’, and I have to confess that I prefer Billett’s description of this level, 
as it emphasises the contribution of teacher and students to the classroom 
knowledge culture. 

5. Individual level – individual learners’ values and goals regarding mathematics, 
and mathematical thinking, which can differ markedly, and which do not 
necessarily follow the teachers’ values and goals.  

 
Thus I will draw on these three perspectives in the rest of this talk, and in particular I 
will assume that my ideas about values regarding mathematical thinking are: 

1. Concerned with developing metacognition 
2. Located within the socio-cultural dimension 
3. Focused on the community of practice in the classroom. 

 
3. Values and mathematical thinking 
Now we turn to the values problem stated in Section 1 above. Building on the above 
analysis, I realised firstly that it was necessary to distinguish between three kinds of 
values: 

• Mathematical values: values which have developed as the knowledge of 
mathematics has developed within any particular culture. 

• General educational values: values associated with the norms of the particular 
society, and of the particular educational institution. 

• Mathematics educational values: values embedded in the curriculum, 
textbooks, classroom practices, etc. as a result of the other sets of values.  

 
My research approach to values and mathematical thinking has been to focus on 
mathematical values, and on the actions and choices concerning them (see Bishop, 
1988, 1991, 1999). In my work I have used White’s (1959) three component analysis 
of culture: 

 Ideological component: composed of beliefs, dependent on symbols, 
philosophies,  

 Sentimental (attitudinal) component: attitudes, feelings concerning people, 
behaviour, 

 Sociological component: the customs, institutions, rules and patterns of 
interpersonal behaviour. 

So how are these components interpretable in terms of mathematical thinking? 
 
3.1 The Ideological component of Mathematical values 
 
In regards to this component of the Mathematical culture, I argued (Bishop, 1988, 
1991) that the critical values concern Rationalism and Objectism. 
Valuing Rationalism means emphasising argument, reasoning, logical analysis, and 
explanations, arguably the most relevant value in mathematics education. 
 
Ask yourself as a teacher: 
Do you encourage your students to argue in your classes?  



  
 

Do you have debates?  
Do you emphasise mathematical proving?  
Do you show the students examples of proofs from history (for example, different 
proofs of Pythagoras' theorem)? 
Valuing Objectism means emphasising objectifying, concretising, symbolising, and 
applying the ideas of mathematics.  
 
Ask yourself: 
Do you encourage your students to invent their own symbols and terminology before 
showing them the 'official' ones?   
Do you use geometric diagrams to illustrate algebraic relationships?  
Do you show them different numerals used by different cultural groups in history?  
Do you discuss the need for simplicity and conciseness in choosing symbols?  
 
3.2 The Sentimental (Attitudinal) component of Mathematical values 
 
In regards to this component, the important values are Control and Progress. 
 
Valuing Control means emphasising the power of mathematical and scientific 
knowledge through mastery of rules, facts, procedures and established criteria.  
 
Ask yourself: 
Do you emphasise not just 'right' answers, but also the checking of answers, and the 
reasons for other answers not being 'right'?  
Do you encourage the analysis and understanding of why routine calculations and 
algorithms 'work'?  
Do you always show examples of how the mathematical ideas you are teaching are 
used in society  
 
Valuing Progress means emphasising the ways that mathematical and scientific ideas 
grow and develop, through alternative theories, development of new methods and the 
questioning of existing ideas. 
 
Ask yourself: 
Do you emphasise alternative, and non-routine, solution strategies together with their 
reasons?  
Do you encourage students to extend and generalise ideas from particular examples? 
Do you stimulate them with stories of mathematical developments in history? 
 
3.3 The Sociological component of Mathematical values 
 
In regards to this component, the important values are Openness and Mystery. 
 
Valuing Openness means emphasising the democratisation of knowledge, through 
demonstrations, proofs and individual explanations.  
Ask yourself: 



  
 

Do you encourage your students to defend and justify their answers publicly to the 
class?  
Do you encourage the creation of posters so that the students can display their ideas? 
Do you help them create student math newsletters, or web-pages, where they can 
present their ideas?  
 
Valuing Mystery means emphasising the wonder, fascination, and mystique of 
mathematical ideas.  
Ask yourself: 
Do you tell them any stories about mathematical puzzles in the past, about for 
example the 'search' for negative numbers, or for zero?  
Do you stimulate their mathematical imagination with pictures, artworks, images of 
infinity etc.? 
 
These then are what I believe to be the crucial values underpinning the development 
of mathematical thinking in the classroom. I think we will make good progress in 
solving our problems if more research is devoted to investigating ways of developing 
these values in our teachers, so that they can develop them in their students. 
 
4. Values, Mathematical Thinking and Lesson Study 
 
Researching values development is no easy matter, but Lesson Study is an excellent 
method for studying the development of values in the classroom. In our Values and 
Mathematics Project (VAMP) we already used a version of lesson study, but without 
trying to affect the teachers’ plans for their lessons. 

1. The teachers told us before the lessons what values they thought they were 
going to develop. 

2. We observed and recorded the lessons 
3. We interviewed the teachers after the lessons to have them explain what they 

thought they had achieved. 
More details of this research can be found at: 
http://www.education.monash.edu.au/research/groups/smte/projects/vamp/vamppubli
cations.html 
 
For a full lesson study of mathematical thinking values, it would be necessary to plan 
together with the teachers what values they would try to develop. 
The teaching ideas earlier would be very appropriate for this. It would be important 
for the experiment to go over a group of lessons, as values could hardly be developed 
in one lesson.     
 
5. Conclusions for research 
 
1. With any design and development research it is essential to have good theories to 

support and structure the work 
2. Mathematical thinking has been studied in many ways, but in relation to values it 

is important to consider it as an aspect of meta-cognition. 



  
 

3. The context for the research should be the classroom, as it is there that the 
community of practice significantly influences the meta-cognitive aspects of 
mathematical thinking. 

4. Equally important to consider in this research is the socio-cultural context, as any 
educational values are embedded in the culture of the society. 

5. Lesson study is an excellent research approach for studying any experimental 
educational development. 

6. It is particularly appropriate for studying values development. 
7. However there need to be a series of lessons studied as values do not develop in 

the space of one lesson. 
8. Finally the teachers need special support in this research, as values teaching 

involve the teacher’s pedagogical identity, which must be respected (Chin, Leu & 
Lin, 2001). 
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TEACHERS’ MATHEMATICAL THINKING 
 

Kaye Stacey 
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Introduction 
In my presentation at the Tokyo 2006 APEC symposium I demonstrated that 
mathematical thinking is important in three ways.    

• Mathematical thinking is an important goal of schooling. 
• Mathematical thinking is important as a way of learning mathematics. 
• Mathematical thinking is important for teaching mathematics.  

 
I spent most of that presentation discussing the first two dots points, and only 
discussed the third point with one example. In this presentation, I will discuss the 
third point in more depth.  I ended my presentation at the last symposium with these 
comments: 
 
“For those us who enjoy mathematical thinking, I believe it is productive to see 
teaching mathematics as another instance of solving problems with mathematics. This 
places the emphasis not on the static knowledge used in the lesson as above but on a 
process account of teaching.  In order to use mathematics to solve a problem in any 
area of application, whether it is about money or physics or sport or engineering, 
mathematics must be used in combination with understanding from the area of 
application. In the case of teaching mathematics, the solver has to bring together 
expertise in both mathematics and in general pedagogy, and combine these two 
domains of knowledge together to solve the problem, whether it be to analyse subject 
matter, to create a plan for a good lesson, or on a minute-by-minute basis to respond 
to students in a mathematically productive way.  If teachers are to encourage 
mathematical thinking in students, then they need to engage in mathematical thinking 
throughout the lesson themselves.” 
 
The first announcement for the  December 2006 Tokyo APEC conference states that a 
teacher requires mathematical thinking for analysing subject matter (p. 4), planning 
lessons for a specified aim (p. 4) and anticipating students’ responses (p. 5).These are 
indeed key places where mathematical thinking is required. However, in this section, I 
concentrate on the mathematical thinking that is needed on a minute by minute basis 
in the process of conducting a good mathematics lesson.  Mathematical thinking is not 
just in planning lessons and curricula; it makes a difference to every minute of the 
lesson.  In this analysis, I aim to illustrate how strong and quick mathematical 
thinking provides the teacher with many possible courses of action. The course of the 
lesson, though, is then determined by how the teacher weighs up the possibilities 
which he or she sees. The mathematical possibilities are considered along with 
knowledge of students’ mathematical understandings and needs and with pragmatic 
factors (eg those associated with keeping the lesson on track), and a choice is made. 
These decisions determine the course of a lesson.  



 
We now examine the mathematics used by two teachers when their classes tackle the 
‘spinners game’. After this, I also report on experiences when the problem was 
adapted and used in a primary teacher education class.  
 

Irene’s lesson on the Spinners Game 
 

   
 

Figure 1. Equipment for the spinners game 
 
 
The spinners game was first discussed in Chick and Baker (2005) and is based on 
their classroom observations and interviews with the teachers. This account of two 
classroom uses is reproduced with adaption from Chick (2007) with permission, and 
additional points relevant to this presentation have been inserted. Irene, an 
experienced teacher, and Greg, who was in only his second year of teaching, were 
Grade 5 teachers in the same school. They had chosen to use a spinner game 
suggested in a teacher resource book (Feely, 2003). The spinner game used two 
spinners divided into nine equal sectors, labelled with the numbers 1-9 (see Figure 1). 
The worksheet instructed students to spin both spinners, and add the resulting two 
numbers together. If the sum was odd, player 1 won a point, whereas player 2 won a 
point if the sum was even. The first player to 10 points was deemed the winner. 
Students were further instructed to play the game a few times to “see what happens”, 
and then decide if the game is fair, who has a better chance of winning, and why 
(Feely, 2003, p. 173). The teacher instructions (Feely, 2003, p. 116) included a brief 
suggestion about focusing on how many combinations of numbers add to make even 
and odd numbers but did not provide any additional direction.  
 
This game can offer worthwhile learning opportunities associated with sample space, 
fairness, long-term probability, likelihood, and reasoning about sums of odd and even 
numbers. The significant issue here, especially in the absence of explicit guidance 
from the resource book is how these learning opportunities can be brought out. 
Although it is not written in the teachers’ resource book, the spinners game has an 
interesting twist.  Analysis of the sample space shows that the chances of Player 2 
(even) winning a point is 41/81 compared to 40/81 for Player 1 (odd).  Player 2 is 
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therefore theoretically more likely to win, however this miniscule difference in 
likelihood implies that the game’s theoretical unfairness will not be evident when 
playing “first to ten points”.  We cannot tell whether the authors of the resource book 
chose this narrow difference deliberately or accidentally. Our interest here is in the 
teachers’ mathematical thinking as they implemented the activity in the classroom.  
 
Irene started the spinners’ game late in a lesson. Most students had played the game 
for a few minutes before Irene began a short class discussion.  She asked the class if 
they thought it was a fair game. Discussion ensued, as students posed various ideas 
without any of them being completely resolved. For instance, someone noted that 
fairness requires that players play by the rules of the game. Most of the arguments 
about fairness were associated with the number of odds and evens, both in terms of 
the individual numbers on the spinners (there are 5 odds and only 4 evens on each 
spinner) and in terms of the sums. One student neatly articulated an erroneous parity 
argument, that since “odd + odd = even and even + even = even but odd + even = odd, 
therefore Player 2 has two out of three chances to win”. Irene said she was not 
convinced about the “two out of three”, but she agreed the game was unfair.  
 
The student’s presentation of this argument, which Irene suspects is not valid, requires 
her to make a decision as to whether it should be pursued, or passed over quickly in 
favour of something else. She might, for example, have presented (or sought from a 
student) another erroneous argument along the same lines but which takes into 
account the fact that odd + even and even + odd occur in different ways: “odd + odd = 
even and even + even = even but odd + even = odd and even + odd = odd, therefore 
both players have two out of four chances to win”. Presenting this argument would 
have emphasised that the different orders are important, but the new argument has the 
same failing as the first argument.  It does not take into account that there are different 
numbers of odd and even numbers. Instead Irene might have decided to highlight just 
this failing of the student’s argument, showing, for example that odd + odd is more 
likely than even + even. The several possibilities for responding to the argument as 
well as the possibility of simply passing over it quickly, as she chose to do, must be 
identified and evaluated in just a few seconds as the classroom discussion proceeds.   
 
Good decisions would seem to be enhanced when teachers see the mathematical 
possibilities quickly and evaluate them from a mathematical point of view (what 
important mathematical principles/processes/strategies/attitudes would the students 
learn from this). However, decision making also needs to be informed by knowledge 
of how the students will respond, and by attention to practical aspects of the lesson, 
including the time available.  For Irene, the necessity to finish the spinners game in 
the few remaining minutes of the lesson might have been the over-riding 
consideration. 
 
Irene then allowed one of the students to present his argument. At the start of the 
whole class discussion this student had indicated that he had not played the game at 
all but had “mathsed it” instead, and at that time Irene made a deliberate decision to 
delay the details of his contribution until the other students had had their say. He 
proceeded to explain that he had counted up all the possibilities, to get 38 even totals 



and 35 odd totals. Although this was actually incorrect, Irene seemed to believe that 
he was right and continued by pointing out that this meant that “it’s [the game is] not 
terribly weighted but it is slightly weighted to the evens”. Irene then asked the class if 
their results bore this out, and highlighted that although the game was biased toward 
Player 2 this did not mean that Player 2 would always win.  
 
As suggested earlier, the spinner game provides the opportunity to examine sample 
space, likelihood, and fairness. Given the impact of time constraints on Irene’s lesson, 
sample space was not covered well, although she believed that the student who had 
“mathsed it” had considered all the possibilities. This highlights a contrast between 
her knowledge of his capabilities and of the details of the content with which he was 
engaged. On the other hand, her content knowledge was sufficient for her to recognise 
the significance of the small difference between the number of odd and even 
outcomes and its impact on fairness. Irene led a good discussion of the meaning of 
fairness and the magnitude of the bias, and its consequence for the ‘first to ten’ aspect. 
Given the short time available to end the lesson, it may have been a wise decision to 
ignore the errors in the student’s sample space and go on to what Irene probably saw 
as the main point: that the difference in likelihood is very small, and that even if there 
is a bias students would not have been able to reliably detect it in the ‘first to ten’ 
game.  
 
In considering Irene’s lesson, we see that its path is determined by many small 
decision points: who to call on next, whether to check the student’s list of outcomes or 
simply believe him because he is a good student, whether to pursue the errors in the 
parity argument etc. These decisions are influenced by factors relating to the 
mathematics (as perceived during the flow of the lesson by the teacher), factors 
relating to the students’ current knowledge and factors relating to the pragmatic 
conduct of the lesson (e.g. how much time is left).  This is illustrated in Figure 2.      
 



 
 
Figure 2.  Decision points in lessons are influenced by many factors.  

Greg’s lessons on the Spinners Game 
In Greg’s class, students played the spinners game at the end of a lesson, and students 
put forward various ideas about whether the game was fair. During this time, Greg 
decided that the next lesson should be spent on finding the sample space.  Greg then 
devoted nearly half of his second lesson to an exploration of the sample space. As 
reported in Chick and Baker (2005) he tightly guided the students in recording all the 
outcomes and could not deal with alternative approaches. He asked the students to 
calculate the probabilities of particular outcomes, which was helpful in highlighting 
the value of enumerating the sample space, but detracted from the problem of 
ascertaining whether even or odd outcomes were more likely. Students eventually 
obtained the “40 odds and 41 evens” conclusion, at which point Greg stated that 
because the “evens” outcome was more likely the game was unfair. There was, 
however, no discussion of the narrowness of the margin, or the difficulty of 
confirming this result empirically through the ‘first to ten’ aspect of the game.  
 
In summary, Greg was much more thorough than Irene in his consideration of sample 
space, but also very directive. Neither teacher seemed aware of all that the game 
afforded in advance of using it, as evidenced by the way it was used, although Greg 
recognised the scope for examining sample space part way through the first lesson. 
Both teachers were, however, able to bring out some of the concepts in their use of the 
game, with Irene having a good discussion of the meaning of fairness and the 
magnitude of the bias, and Greg illustrating sample space and the probability of 
certain outcomes. An important observation needs to be made here. The teacher guide 
that was the source of the activity gave too little guidance about what the spinner 
game afforded and how to bring it out. Even if such guidance had been provided, 



there is also still the miniscule bias problem inherent in the game’s structure that 
affects what the activity can afford. It is very difficult to convincingly make some of 
the points about sample space, likelihood, and fairness with the example as it stands. 
It can be done, but the activity probably needs to be supplemented with other 
examples that make some of the concepts more obvious (see, e.g., Baker & Chick, 
2007). This highlights the crucial question of how can teachers be helped to recognise 
what an example affords and then adapt it, if necessary, so that it better illustrates the 
concepts that it is intended to convey. 
 
Interestingly, in both classes the students did not—indeed could not in any reasonable 
time frame —play the game long enough for the slight unfairness to be genuinely 
evident in practice, yet most students claimed that the game was biased towards even. 
This may have occurred because the incorrect parity argument made them more aware 
of the even outcomes than the odd ones.  
 
The observers were surprised by the tight way in which Greg controlled the method 
by which the outcomes were enumerated.  He wanted to see the 81 outcomes, along 
the lines of the enumeration on the left hand side of Figure 3, although in an array 
setting out. Greg seemed constrained by his mathematical knowledge, having only 
one way to think of the sample space—via exhaustive enumeration. When a student 
offered an erroneous suggestion which could have been readily adapted to a more 
elegant and insightful method, he did not encourage or discuss it. In fact, there are 
many bridges between the totally routine method of writing out 81 outcomes and 
counting how many totals are even or odd, and insightful ways which give the answer 
quickly. At the top right hand side of Figure 3, for example, is one of the bridges. As 
they begin work on the exhaustive enumeration on the left hand side, students might 
be encouraged to note the patterns – alternating evens and odds for a fixed first 
choice, the EOEOEOEOE pattern when the first choice is odd and the OEOEOEOEO 
pattern when the first choice is even. These patterns are easily explained by students, 
and they can be readily utilised to find the how many even and odd sums there are, 
either by addition or by multiplication as outlined in the figure.  The tree diagram 
approach at the bottom of Figure 3 would be too sophisticated for Greg’s young 
students, since it relies on more strongly combinatorial thinking, but a version of it 
might be reached after experience with the patterns above.  
 
 
 
 
 
 
 
 
 
 
 
 
 



Enumeration of 81 
separate outcomes 

Enumeration mixing number and parity 
considerations 

First Second Sum Sum First Second Sum First Second Sum 
1 1 2 E 1 E 1 O 
1 2 3 O 

Odd 
(eg 1) 2 O 

Even 
(eg 2) 2 E 

1 3 4 E  3 E  3 O 
1 4 5 O  4 O  4 E 
1 5 6 E  5 E  5 O 
1 6 7 O  6 O  6 E 
1 7 8 E  7 E  7 O 
1 8 9 O  8 O  8 E 
1 9 10 E  9 E  9 O 
2 1 3 O 5 evens and 4 odds 4 evens and 5 odds 
2 2 4 E 
2 3 5 O 
2 4 6 E 

The 5 odd numbers contribute 25 evens and 20 
odds, and the 4 even numbers contribute 16 evens 
and 20 odds, making 41 evens and 40 odds 
altogether. 

2 5 7 O 
2 6 8 E 
2 7 9 O 
2 8 10 E 
2 9 11 O 
3 1 4 E 
3 2 5 O 
3 3 6 E 
3 4 7 O 
3 5 8 E 
etc etc … … 
 
Figure 3.  Three different ways of counting numbers of odd and even spinner totals 
 
In considering why Greg made his decision to focus his lesson on finding the 81 
element sample space in one particular way, it is again likely that his decision is 
influenced by judgements about mathematical factors, factors related to the students 
and their current knowledge and pragmatic factors related to the lesson. Greg decided 
in the first lesson that he would allocate the second lesson to finding the sample space, 
so it was a priority for him, and he taught it thoroughly.  Whereas Irene’s treatment of 
sample space appeared rushed in response to a shortage of time, Greg decided that 
this was sufficiently important for a second lesson. His priority given to the idea of 
sample space is also evident in the observation that he did not focus only on the 
spinner game, but used the sample space to find the probability of events unrelated to 
the initial spinner game.  
As is illustrated in Figure 2, mathematical priorities can only be chosen from the 
mathematical possibilities that are perceived by the teacher.  Consequently, it may be 



that Greg’s focus on one way of finding the sample space was because he was not 
aware of other ways, or was uncertain of their validity. On the other hand, it may have 
been a more active prioritising. He may have seen value in teaching students about 
systematic listing, and wanted students to go through that process very thoroughly, 
getting a real ‘feel’ for how to go through the cases one by one. From yet another 
point of view, Greg may have judged that the full, very routine, case-by-case 
enumeration was at an appropriate level for his target group in that class, and so he 
may have selected the method as optimal for the whole class, even if not for each 
individuals.  
 
This is all speculation, even though Greg was interviewed about his lesson (which 
contained many other features). It is simply not possible for teachers to thoroughly 
explain each of the myriad decisions that are made in the course of any one lesson. 
The point of this discussion, though, is that at any stage in the lesson, Greg was aware 
of certain mathematical possibilities. These may have resulted from deep or 
superficial insight into the spinners game; they may be numerous or sparse; they may 
be mainly procedural or extend to strategic thinking etc. To make a decision on how 
to respond to a student’s question or a mathematical problem arising in the conduct of 
the class, Greg has to set priorities and act on them. In this way, we see that a 
teacher’s mathematical knowledge (conceptual, procedural, strategic etc) sets the 
choices and so is very important, but good decision making also depends on teachers 
being able to make good choices amongst them, in the light of progressing the main 
aims of the lesson. 

Helen’s lesson on the spinners game 
 
Even when lessons are videotaped and teachers are interviewed after the lesson, much 
of the mathematical thinking upon which teachers make decisions about the paths of 
lessons remains hidden. For this reason, the next example is about a discussion on an 
episode in a teacher education class, which we discussed together on several 
occasions. 
 
Helen teaches pre-service primary teacher education students and is a highly 
accomplished mathematical thinker. She had observed the lessons of Irene and Gary, 
and decided to use the spinners game in class. She wanted student teachers to analyse 
what mathematical learning it could generate and how.  To simplify and also to 
extend the game, Helen changed the numbers on the two spinners (see Baker and 
Chick (2007) for examples).  
 
On one occasion, Helen’s class used two spinners labelled with 0, 1, 2 and 3. This 
small change, selected by Helen to simplify the game, caused a new complication. 
Many of her students began the enumeration, but halted when they needed to decide 
whether the sum of 0, obtained by throwing 0 on each spinner, was an even number or 
an odd number, both or neither. This turned what was intended to be a short 
mathematical episode using a simplified spinners game used, to an unpredicted query 
about odd and even numbers. 
 



At this point, Helen faces a decision. Once again it will be informed by her 
knowledge of mathematics and her mathematical thinking during the lesson, and by 
weighing the priorities for the lesson. This will be discussed below. However, it is 
worth observing first that Helen had not predicted the evenness of 0 would be such an 
obstacle to the progress of this lesson. In future use of the spinners game, having this 
additional knowledge of students (urther pedagogical content knowledge), she may 
avoid using the number 0 on the spinners so that the lesson proceeds without this 
obstacle, or she may deliberately choose it to uncover these misconceptions.  
 
Addressing the apparently simple question of whether 0 is even or odd or neither or 
both, draws again on mathematical knowledge and pedagogical content knowledge 
(Shulman, 1986, 1987) working in tandem.  The student teachers were very familiar 
with the fact that 2, 4, 6, 8, 10, 12, etc are even numbers. Why would they query 
whether 0 is even, and what would convince them that it is? Possibly the reason for 
the difficulty is that students draw on intuitive meanings for ‘even’, rather than a 
mathematical definition. For example, they may associate an even number with the 
possibility of pairing up. If there is an even number of children in our class, we can go 
for a walk arranged in pairs. If there is an odd number of children, there will be one 
left over, as illustrated in Figure 4.  

 
Figure 4.  An even number of children can walk in pairs, but not an odd number.  
 
This informal interpretation of ‘even number’ is difficult to apply to decide whether 0 
is even or odd, because whilst there is certainly not ‘one left over’, there are no pairs 
either. Kaplan (1999) discusses difficulties like this. Alternatively, students who draw 
just on the list of examples to decide if a number is even or odd (2, 4, 6, … etc)  have 
no way of knowing whether 0 should really be on the list or not, when there is no 
principle to guide them. They know 0 is special – is this another way in which it is 
special? 
 
Helen was keen to draw her students’ attention to the mathematical definition of an 
even number, but she reported that she immediately saw two possibilities. She could 
say that an even number is defined to be an integer which is exactly divisible by 2 or 
that an even number is defined to be an integer that is equal to 2 times an integer. This 
might seem a small difference, but Helen chose the second version because of her 
previous experience with the awkwardness in teaching associated with discussions of 
dividing by zero. Even though the test for evenness does not involve dividing by zero 
(but dividing by 2), Helen avoided the division explanation because she felt students 
may confuse the situations. In other words, she presented students with finding 
whether there is an integer satisfying the first rather than the (equivalent) second 
equation below: 

0 2 ?
0 2 ?
= ×
÷ =

 

 



[ In neither case could she avoid the likely obstacle of students’ uncertainly about 
whether 0 is an integer.] Here we see that Helen’s strong mathematical knowledge 
and her ability to see the mathematical possibilities quickly presented her with 
possibilities. Her pedagogical content knowledge (in this case of likely students’ 
difficulties) guided her choice.  
 
Was it best to pause to discuss why 0 is even? Helen could have just asserted that 0 is 
even and moved the lesson back on the track of investigating the fairness of the 
spinners game. When reflecting on this question, Helen asserted that the diversion 
was useful because it enabled her to clarify some fundamental misunderstandings 
about zero and to show how mathematical concepts are determined by definitions. 
Here, we see that Helen justifies her choice in terms of her understanding of important 
principles of doing mathematics – in this case the role of definitions in mathematics. 
More fundamentally, it seems to reveal a predisposition on Helen’s part to avoid 
having students see mathematics as arbitrary and without reason.  
 
After her observations of the lessons of Irene and Greg, Helen and her colleague 
published a suggested teaching sequence for primary classes using the spinners game 
(Baker and Chick, 2007). The spinners she suggests have no zeros. Her suggested 
sequence begins with a pair of spinners each with just 3 digits, arranged so that there 
is a strong enough bias to be evident in empirical trials. Students begin by finding this 
empirical experience of the bias, tallying class results.  Students then draw up the 
sample space and compare theoretical probabilities to empirical class results. They 
discuss variations between theory and experiment. The pair of spinners chosen are 
biased towards odd totals (they do not have the same numbers on each spinner – see 
mathematical note below.  Helen has selected these spinners so that the false parity 
arguments give an obviously wrong answer. This is a very substantial example of 
mathematical thinking being used in lesson planning, again in concert with 
pedagogical content knowledge – in this case knowledge of students’ false arguments. 
Helen’s suggested lesson sequence then moves back to the original spinners problem.  
this gives experience in finding a large sample space systematically and subtleties of 
comparing theoretical and empirical results when the bias is small. Finally students 
create their own spinners and discuss what they designed the spinners for, how unfair 
the game is, and what is likely to happen if they play the game many times.  
 

Conclusion 
At the beginning of this paper, I drew an analogy between teaching a mathematics 
lessons and solving a real world problem with mathematics.  I noted that in order to 
use mathematics to solve a problem in an area of application, mathematics must be 
used in combination with knowledge from the area of application. In the case of 
teaching mathematics, the area of application is the classroom and so the teacher as 
‘mathematical problem solver’ has to draw on general pedagogy as well as 
mathematical pedagogical content knowledge to contribute to the solution. As will 
many problems in areas of application of mathematics, these teaching problems need 
to be solved in an environment that is rich in constraints: short lesson times,  
inadequate resources at hand, etc. In the teachers’ role of analysing subject matter, 



designing curricula or in creating a plan for a good lesson, solving the problem can 
occur with adequate time for reflection, testing ideas and reconsidering choices. 
However, in the course of a lesson, this mathematico-pedagogical thinking happens 
on a minute-by-minute basis, with the aim of responding to students in a 
mathematically productive way.  If teachers are to encourage mathematical thinking 
in students, then they need to engage in mathematical thinking throughout the lesson 
themselves, but this mathematical thinking is under severe time pressure.  
 
In the conduct of a lesson, teachers see various mathematical possibilities. Some 
teachers will see more than others in any given situation and some of the possibilities 
that teachers see may not be correct. The process of choosing amongst these 
possibilities, which again occurs on a minute by minute basis, will be guided by the 
deep knowledge of the students (the actual current mathematical knowledge of these 
students as well as thinking typical of students like these), operating under the 
constraints of teaching a lesson in a fixed time to achieve an identified goal.  Teachers 
who are stronger mathematical thinkers will see more possibilities, and in the moment 
when a decision needs to be made, their choices will be better informed by teaching 
underlying mathematical processes and strategies.  

A mathematical note  
Solving the problem of bias in the spinners game is a nice example in algebraic 
factorisation, with surprising results.  
 
If there are n even numbers and m odd numbers on the spinners, then there are 

2 2n m+  ways of getting an even total, and 2mn ways of getting an odd total (see 
Figure 5).  Since 2 2 22 ( ) 0n m mn n m+ − = − ≥  we can conclude that 
(i) if n = m then the spinner game is fair  
(ii) otherwise, there is always slightly more chance of getting an even number. 
 
Moreover, if the numbers on the spinners are consecutive whole numbers, then n and 
m will either be equal or differ by 1 (ie n –m = 0 or |n-m| = 1). This means that the 
number of even sums will always be equal to, or one more than the number of odd 
sums. In this way, we see that the very close comparative probabilities of the original 
spinners game (41/81 and 40/81) are typical of having consecutive numbers on the 
spinners.  
 
To generalise further, if there are n1 evens and m1 odds on the first spinner and n2 and 
m2 on the second spinner (respectively) then there are n1n2 + m1m2 even sums and 
n1m2 + n2m1 odd sums. Are evens or odds more likely to be thrown? Calculate the 
difference in number of outcomes:  

1 1 2 2 1 2 2 1 1 1 2 2( ) ( ) ( )n m n m n m n m n m n m+ − + = − −  
This means that if evens are more prevalent on both spinners OR odds are more 
prevalent on both spinners (ie the two factors in the final product have the same sign), 
then the game is biased in favour of the even sums. Alternatively, it evens are more 
prevalent on one spinner and odds more prevalent on the other spinner (ie the two 
factors in the product have opposite signs), then the game is biased in favour of odds.  



 
 

Figure 5. Odd and even spinner totals from spinners with n even and m odd numbers 
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MATHEMATICAL THINKING IN JAPANESE CLASSROOMS  

 
Abraham Arcavi 

 
 
Introduction: personal background and intention 
As a young student, I have experienced mathematics classrooms at the elementary and 
secondary school level and at the university level in Argentina. After that, I have 
experienced mathematics classrooms as a graduate student in Israel.  In both countries, I 
taught mathematics at junior high school and high schools.  In Israel and the USA, I was 
engaged in curriculum development, teacher education and research on teaching and 
learning.  It is against that variegated, yet all-Western, background that I was exposed to 
the fascinating microcosms of Japanese mathematics classrooms at the elementary school 
level.  Before I went to CRICED, at Tsukuba University to work with Professor Masami 
Isoda for four months, I had read research describing lesson study in Japan (e.g. 
Fernandez and Yoshida, 2004, and other sources) which focused on comparing and 
contrasting Japanese (and other Asian classrooms) with American classrooms (e.g. 
Stevenson and Stigler, 1992, Stigler and Hiebert, 1999).  I had also watched and 
analyzed an algebra and a geometry lesson (published by TIMSS in 1999), and on their 
basis, an in-service workshop for teachers and teachers of teachers was designed and 
implemented (Arcavi & Schoenfeld, 2006) drawing on ideas from the Teacher Model 
developed by Schoenfeld (1998).  However, I think I was able to fully appreciate the 
teaching in mathematics classrooms in Japan only through the non-mediated experience 
(except for the simultaneous translation) of “being there”, watching how lessons evolve, 
following children’s work and discussions, talking to teachers and researchers and 
sensing the common pedagogical and mathematical characteristics of all the lessons I 
saw.  
 
If we take the statement that “there is nothing more practical than a good theory” (Lewin, 
1952, p. 169) and attempt to formulate its symmetrical version, we may propose that 
“there is nothing more theoretical than a good practice”.  This may make little sense as 
stated, however, it may suggest that a exemplary practice can be a powerful source for 
theorizing, which in turn may help understand the practice, especially a teaching practice. 
Our field has many learning theories, however there are not so many instructional 
theories.  It is with the intention of contributing to instructional theories, that I would 
like to briefly share what I have learned from mathematics classrooms in Japan.  
  
Mathematical Thinking – A Japanese view 
“Mathematical thinking is the “scholastic ability” we must work hardest to cultivate in 
arithmetic and mathematics courses… [it] is even more important than knowledge and 
skill, because it enables to drive the necessary knowledge and skill” (Katagiri, 2006, p.5). 
Moreover, “mathematical thinking allows for (1) an understanding of the necessity of 



using knowledge and skills (2) learning how to learn by oneself, and the attainment of the 
abilities required for independent learning” (Katagiri, 2006, p.6) 
According to this philosophy, advancing mathematical thinking includes the development 
of: 

- ‘attitudes’– intellectual predispositions towards doing mathematics and solving 
problems, including perspectives on what mathematics and mathematical activity are,  

- ‘contents’– concepts, properties, interrelationships, and  
- ‘methods’– inductive and deductive reasoning, analogical thinking, generalization, 

specialization, symbolization.   
This rich view of what constitutes mathematical thinking drives teaching and was clearly 
reflected in all the lessons I saw and analyzed. 
 
In the following, I concentrate on a particular aspect of the teaching practice: “teacher” 
actions, decision making, lesson crafting and the classroom setting which are aimed at the 
development, support and encouragement of sound and independent mathematics 
thinking.  In other words, I describe what Japanese teachers actually do, how they do it, 
in order to engage students in thinking and learning while they are ‘doing’ mathematics, 
and how do teachers connect to students “en masse” in a fruitful and unconstrained way? 
(Lampert, 2001, p. 424). 
 
Characteristics of the lessons  
The following are some of the common characteristics of mathematical lessons in 
elementary school, which I found to be at the core of supporting mathematical thinking, 
and which are the result of purposeful planning and crafting by the teachers. 
 
Coherence 
All the lessons have a “story” – “A good story is highly organized; it has a beginning, a 
middle, and an end, and it follows a protagonist who meets challenges and resolves 
problems that arise along the way.  Above all, a good story engages the reader’s interest in 
a series of interconnected events, each of which is best understood in the context of the 
events that precede and follow it” (Stevenson & Stigler, 1992, p. 177).  In other words, 
each lesson evolves and revolves around a central mathematical problem on which 
students work bringing in their common sense, their knowledge from outside mathematics, 
their findings from investigating the problem and their ongoing building on the ideas they 
produce in situ.  The teacher leads students to apply knowledge and ideas that emerge 
during the lesson.  The work has a unifying mathematical thread and sometimes the 
teacher creates an atmosphere of “suspense” around features of the problem, which fuels 
interest and maintains students engaged and active.  
Coherent lessons that pursue central ideas around a meaningful and interesting problem are 
related to all the three components of mathematical thinking described above: attitudes, 
contents and methods. Whole lessons which pursue a central problem have the potential to 
nurture a view of mathematics as a discipline that tackles complex and relevant problems, 
which take some time to solve and which include attempts that fail and attempts that 
succeed, alternative approaches, discussion and exchange of ideas.  The content involved 



in solving a central problem goes beyond the presentation of a skill or a concept, the 
teacher involves the students in both conceptual understanding and in procedural activities, 
which are interwoven and are at the service of each other.  In the process students propose 
methods of work and apply different ways of reasoning. 
The following is an example of a lesson centered around one problem “the unfolding of the 
cylinder” (Arcavi, 2001).  This is the second of three lessons (allotted by the curriculum) 
on the unfolding of solids. During this class, the problem is to design models of unfolded 
cylinders and then to assemble them in order to check that they indeed yield a cylinder. The 
goals are that students learn interactively (with concrete materials and with other students) 
about the structural components of the intervening two-dimensional figures, their relative 
positions, and, in certain cases, the importance of careful planning and measurements. In 
the process, students exercise their imagination, spatial visualization abilities, and 
creativity.  The lesson opens with the teacher reminding the class of a previous lesson on 
the unfolding of a tetrahedron, and asks to think about the shape of an unfolded cylinder. 
After the class worked on the problem for a while, the teacher invites students to share their 
drawings on the blackboard. The first proposal is the classical: a rectangle and two tangent 
circles attached to its largest sides (prototypically, the largest sides are the horizontal). The 
teacher takes the opportunity to analyze the figure with the class, and to make sure students 
understand and agree on all the details. Thus, by asking several questions, simple but very 
important issues are raised and discussed, like: 
- the two circles (the bases of the cylinder) should be of the same size,  
- the two circles should be tangent to the a corresponding pair of parallel sides of the 

rectangle (and not secant to them),  
- the length of the tangent sides should be equal to the circumference of the circles 

(students recall the number π and the formula for calculating the circumference),  
- the length of the other two sides of the rectangle (to which the circles are not 

attached) are unconstrained (short sides and long sides will yield short or slender 
cylinders respectively),  

- the points of tangency could be anywhere on each of the opposite sides of the 
rectangle. 

Once these issues were discussed, the teacher encourages the class to produce alternative 
plane models for an unfolded cylinder. The class begins to propose other models 
including slicing and re-attaching parts of the bases, and many other creative designs, 
many of which will not fold into a cylinder. At a certain point, the teacher encourages the 
students to actually cut their designs, attempt to fold them into a cylinder and see if they 
succeed. In case of failure, students are encouraged to analyse the sources of their 
erroneous designs. By the end of the class, all the models are displayed. 
The “story” of this lesson has distinct parts: the discussion of the prototypical unfolding, 
the planning and design of alternatives, the practical work of assembling of the cylinders 
out of the models proposed, and the noticing and discussions of the failures.  Coherence 
is not only a characteristic kept within the lesson (including the integration of visual 
reasoning with calculations, posing conjectures and checking them, analysing failed 
attempts and discussing each other’s solutions), but it is also related to the two other 
lessons this class has on the unfolding of solids. 



Challenging problems  
In most of the lessons I saw, there were instances in which I found myself solving 
mathematical aspects of the problem, as if I were a very engaged student participating in 
the class.  I took this as an indication that the problems and discussions in these lessons 
are indeed mathematically interesting, challenging, and deep.  
Consider, for example, a third grade lesson entitled “New ways of calculation” (for a 
detailed description see Arcavi 2007), in which the students are asked to calculate a series 
of multiplications of two numbers between 20 and 30 in which their unit digits add up to 
10 (e.g. 23x27, 24x26, 25x25).  As the lesson slowly unfolds, the teacher asked students 
to notice, record and communicate patterns (the way the exercises are handed in does not 
make the task of finding patterns a straightforward one), to propose an easy algorithm to 
perform these calculations, and to attempt to explain when and why it works.  The new 
rule students discover and propose is that the result is 600 plus the result of the 
multiplication of the two digits, e.g. 23x27=600+3x7=621.  Obviously, third grade 
students lack the algebraic tools to generalize and explain why the rule works, thus 
students work at the edge of their knowledge (or perhaps a little beyond that). 
   
The following example is the central problem of the geometry class of the TIMSS video. 
“Replace the non-straight boundary dividing two pieces of land in the figure below 
 

 
 
by a straight boundary line, while preserving the areas of the original pieces.” 
I have shared this problem with many knowledgeable mathematics teachers and they 
worked for a while before finding a solution, agreeing that this is a very difficult problem 
to be given to 8th graders.  Certainly, this challenging problem was given within a 
coherent sequence of lessons and was supposed to be a non-trivial application of a 
property studied in a previous lesson: that all the triangles with the same base, and whose 
third vertex lies on a line parallel to that base, have the same area (the “constant area 
property”).  
 
The above problems are very different in nature, but they share some characteristics: they 
are not straightforward exercises, they require students to work at the edge of their 
knowledge, to explore, to discuss different approaches and to slowly device ways to 
make progress on the basis of mathematical content and different ways of reasoning.  
The choice of problems like these implies that Japanese teachers feel very comfortable 
with their mathematical knowledge.  But most importantly, by using these problems for 



an entire class, teachers enact their confidence that their students can and should engage 
with mathematical challenges and that they will be able to make progress.  
 
Posing questions 
The questions teachers pose to their students during the lessons and their questioning 
techniques are in consonance with the type of problems that teachers choose to be at the 
core of each lesson and at the service of solving them and learning from them.  Many 
times the questions request explanations, arguments or counter-arguments.  A salient 
characteristic of the lesson is to make sure that these explanations are fully understood by 
everybody, and one would expect the following line of questioning to attain this goal: 
requesting the student to repeat her explanation for the rest of the class, asking the class 
whether they understood it, asking who agrees or disagrees, and requesting other 
explanations.  These are indeed part of the teacher’s repertoire of questions.  However, 
a technique which I found of great interest and importance is none of the above: after a 
student produces an explanation, an argument or proposes a conjecture the teacher asks 
the whole class who can explain such explanation or who can tell ‘what is the thinking 
behind such explanation or proposal’.  Such request nudges students to carefully learn to 
listen to each other, and before they can agree or disagree, to take the other’s ideas and be 
able to replay and enact them as if they were theirs.  Learning to listen to each other can 
be highly beneficial in developing the kinds of mathematical thinking the Japanese 
teachers are after in at least two different directions.  Firstly, it may support the 
nurturing of empathic and caring relationships by conveying the message ‘I take your 
idea and delve deep into it and its merits and sources’.  Such a message is the 
precondition for the development of “academic civility” (Lampert, 2001, p. 431) in a 
classroom, within which all ideas are respected and valued and inspected mathematically.  
Secondly, by fully taking the other’s perspective, one may be exposed to new ideas and 
forced to analyze them from within – on the one hand, this helps towards ‘decentering’ 
oneself and on the other hand, this may lead to re-inspect one’s own knowledge, against 
the background of what was heard from others (Arcavi & Isoda, 2007).  Thus, such a 
simple request from the teacher may be instrumental in supporting mathematical 
thinking. 
There is another aspect to the questions teachers ask: the redefinition of the role of 
authority.  In my observations, the teachers' authority is reflected in the decision about 
which task to focus on, which questions to pursue and when, how to distribute the right to 
speak and how to sequence the activities.  The authority is not exerted in determining 
what is mathematically right or wrong, in this case the teacher deflects, as far as possible, 
such authority to the mathematics itself (Arcavi et al., 1998), placing a central role on the 
production of explanations and arguments to settle opposing results. This implies that 
erroneous answers are not immediately judged as incorrect, they have legitimate status 
until they are discussed against others.  Building on students capacities to evaluate 
mathematical arguments and ideas places on them responsibility on their own learning 
and indeed supports the development of mathematical thinking.  
 
 



Anticipation 
Asking good open questions (such as requesting explanations, conjectures and proposals 
for strategies and ideas) constitutes, in more than one sense, a challenge for the teachers, 
because  when students respond bringing in their proposals and ideas, teachers must do 
several things at once.  Firstly, they have to perform an on site and very quick 
evaluation of the mathematical merit of the students’ proposals, and this implies a solid 
mathematical background on the part of the teacher and a confidence to put it to use 
‘online’.  Secondly, there must be an evaluation of the pedagogical possibilities that a 
student proposal affords and a decision regarding how to take advantage of it - this may 
imply changing the direction of the planned lesson and sometimes even some 
relinquishing of the control on the new directions the lesson may take.  In my view, this 
is one the most difficult predicaments of the teaching profession.  How do Japanese 
teachers cope with such situations?  As far as I understand it, this issue is at the core 
lesson study: to study a lesson in depth and to implement it several times such that most 
students' reactions and proposals can be anticipated and only very few are new and 
surprising.  Anticipated student reactions unload from the teacher the burden of on-site 
decision making.  Furthermore, very fruitful student reactions which can contribute to 
the course of the lesson and which the teacher knows the students can produce them, can 
be stimulated and looked for at appropriate moments of the lesson. 
 
Diversity 
Much has been said about the ethnic (maybe also socio-economical) and cultural 
homogeneity of the Japanese society.  Thus classroom realities are very different from 
those of the countries I know.  Multiculturalism, multilingualism and social deprivation, 
which are pervasively reflected in classrooms in many Western countries are almost not 
known in Japan.  However, there is another kind of diversity which is as present in 
Japanese classrooms as in their Western counterparts and which is no less of a challenge 
to teaching: children differ in their academic achievements and in their mastery of the 
subject.  Japanese teachers cope with such diversity using different pedagogical 
approaches to a same topic, they have a proper pace and they harness all students' 
responses from the less to the more sophisticated (in that order) in the development of a 
lesson.  However, no matter how competitive this society may be regarded by many, 
elementary schools do not track students and the teachers attend to all children in an 
impressively inclusive way.  It is true that the respectful way in which Japanese people 
treat and address each other in ingrained in the culture and is the common and natural 
behavior: in contrast to what I have seen in many classrooms in other countries, I have 
not seen any Japanese teacher raising their voices or reprimanding students.  Even when 
initial commotion was caused by the presence of visitors or by the mere playfulness of 
the children, the unrest quiets down by itself, mostly without the need of any intervention.  
Thus, the atmosphere teachers manage to induce in their classrooms is very propitious for 
thinking, working, asking any kinds of questions and freely expressing thoughts and ideas 
by everybody.      
 
 



Pace 
Some of my colleagues with whom I shared videos of Japanese lessons pointed to me that 
in many instances during the lesson they felt that the pace was slow.  Interestingly, this is 
also the impression of many others (Stevenson & Stigler, p. 194).  The slow pace of the 
lesson is related to its coherence (slowly building the “story” as described above) and to the 
teacher intention to be as inclusive as possible and to leave nobody behind.  Moreover, 
this pace is a reflection of another deep belief: thinking takes time, ideas need to be mulled 
over, applied, discussed and approached from different directions, and if this is to be taken 
seriously there is no room for rushing.  
   
Setting and devices 
The ‘architectural’ setting of the classroom is traditional: lines of benches in rectangular 
rooms with a board at the front, simple teaching aids (such as magnetic manipulatives, 
paper cutting and the like). This setting does not prevent students from working with 
peers, come in groups to the board, and even moving around when the teacher thinks it is 
appropriate.   
The blackboard plays a very central role in all classrooms, is not only a working space, 
but an organizational device, a thinking tool and a medium to record the flow of the 
lesson and its main ideas.  Many times at the end of the class, if one looks at the board, 
it can tell the whole “story” of the lesson, especially displaying students’ work and their 
differences of approaches.   
  
Empathy 
It is my impression that all students are affectively “contained” within a solid support net: 
teachers and parents work hard to closely follow up each of the students and attend to 
their needs as they arise.  Teachers treat all their students with respect, they allow them 
to be boisterous and at times they even promote that.  Some teachers also display their 
sense of humor, making the whole atmosphere of the class agreeable and supportive.  
Empathy seems to be yet another teaching strategy, which does not come at the expense 
of being intellectually demanding.  Empathy seems to be characteristic of the way 
teachers address each other when discussing lesson plans and criticizing lessons. 
Teachers are used to expose their teaching to colleagues knowing that the analysis of 
their moves will be deep and thorough but very respectful and aimed at learning from 
each other. 
 

----- 
 
The above characteristics are very different from each other.  Some refer to a very deep 
pedagogical idea, some merely describe the physical setting, some present mathematical 
features, others refer to inter-human relationships.  I would like to claim that maybe the 
uniqueness of the Japanese classrooms is due to the synergy of all these characteristics 
and to the professionalism with which of them each of them is treated.   
 
 



Open questions 
A first surprise regarding mathematics classrooms refers to something I did not see in 
them: computerized technologies.  In spite of the many innovative proposals (and studies 
of their feasibility) about ways to introduce computerized and communication technologies 
both in the Japanese academia as well as in the academia of Western countries, I have not 
seen the use of computers in Japanese classrooms.  In my view, the work with 
computerized technologies could fit in with the Japanese characterization of what 
mathematical thinking should be supported, and its availability in Japan is not an issue – 
thus, I wonder why it has not entered the classroom. 
A second surprise refers to the shift in pedagogical practices that occur in secondary 
school, where most of the lessons consist of teacher lectures. 
And finally, I wondered a lot about the existence, proliferation and success of “juku” 
schools (and possibly other out of school activities in mathematics), which are attended by 
a large number of students and are taken so much for granted by Japanese society at large, 
and which mostly emphasize drill and practice. This phenomenon can have several 
underlying reasons. For example, is it assumed and agreed that the time devoted by schools 
is insufficient, and drill should be learned elsewhere? Or, is it assumed that students need 
“extra practice”? Or, students should not have that much free time after school and their 
learning must be extended beyond the formal schooling? Or, students' full potential cannot 
be completely developed by the school only? Or, should students meet other teaching 
styles? Or….   
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PLANNING A LESSON FOR STUDENTS TO DEVELOP

MATHEMATICAL THINKING THROUGH PROBLEM SOLVING

Akihiko Takahashi

DePaul University

Teaching through problem solving has been emphasized in order to improve the
teaching and learning of mathematics. However, it may not be easy for teachers to
incorporate problem solving in their classrooms. An ideal way to incorporate problem
solving is to plan a lesson and examine it through lesson study. This paper is intended to
guide teachers in planning a lesson in which students will develop mathematical thinking
through problem solving.

Developing mathematical thinking through problem solving
Teaching mathematics is for students to develop knowledge and skills that are
mathematically important both for further study in mathematics and for use in
applications in and outside of school is important for school mathematics. However, the
objective of mathematics education is not only to enable students to acquire
mathematical knowledge and skills but also to foster mathematical thinking.
Mathematical thinking is crucial when students acquire and use mathematical
knowledge and skills. In other words, students may have a difficult time acquiring and
using knowledge and skills unless they have a sufficient ability to think
mathematically.

In order to developing mathematical thinking, it is not enough for students simply to
receive knowledge and skills by listening to teachers. Students need to actively
engage in acquiring knowledge and skills, and to develop mathematical thinking through
the process of mathematical activities. Thus students will be able to use these knowledge
and skills effectively in their daily life as well as in their future carriers (Brown, 1994).

Based on the above assumption, it is suggested that teachers should provide students
with opportunities to acquire knowledge and skills of mathematics through
mathematical activit ies such as problem solving, reasoning and proof,
communication, connection, and representation (National Council of Teachers of
Mathematics, 2000). To implement such activity -based learning in mathematics
classrooms, it is important for teachers to plan lessons that support students
acquisition of the knowledge and skills by using mathematical thinking. Many
teachers agree that teaching must emphasize the process of acquiring mathematics, But
teachers often focus solely on teaching the contents to the students rather than providing
students with opportunities to actually acquire the contents by using mathematical
thinking. One of the reasons for teachers’ hesitation to provide



activities that cause students to develop mathematical thinking might be that the
teachers have rarely experienced such lessons when they learned mathematics
themselves. Moreover, planning lessons that focus more on students’ learning process
requires teachers to have more knowledge about their students, such as their thinking
processes, in addition to having knowledge of the contents of mathematics (Simon &
Tzur, 1999).

One of the ways to provide students with an opportunity to acquire not only
knowledge and skills but also mathematical thinking is teaching mathematics through
problem solving. Teaching mathematics through problem solving has been
emphasized for decades, and many reform curriculum materials include problem
solving as an integral part of learning mathematics (National Council of Teachers of
Mathematics, 1980, 1989, 2000, 2006).

Problem solving in mathematics education is defined as “engaging in a task for which
the solution method is not known in advance (National Council of Teachers of
Mathematics, 2000).” This means that a problem suitable for problem solving is not
necessarily a story problem or a problem in the real world. As long as a student does
not know how to solve the problem, it can be a problem for problem solving for the
student. In order word, even if a problem is presented as a real world story problem,
it might not be a real problem for a student who already knows how to solve the
problem. It is now called an exercise.

It is also important to note that teaching through problem solving is more than simply
giving a task for students to solve a problem for which they have not learned the
solution methods. Table 1. sho ws major differences between teaching of problem
solving, which is a simplistic interpretation of the problem-solving approach, which
can often be seen in traditional textbooks, and the teaching through problem solving,
which is recommended by reform documents such as the NCTM Standards (2000).

Table 1. Problem-Solving Approach

Teaching of problem solving Teaching through problem solving

 'What is it?

Problem Solving as an approach

to develop problem-solving

skills and strategies.

 How to incorporate it

into a curriculum

Usually the lessons based on this

approach can be found at the end

of c h a p t e r s f o r

d e v e l o p i n g problem-solving

skills and strategies The lesson

often end when each student

comes up with a solution to the

problem. (show and tell)

 'What is it?

Problem solving as a powerful approach

fordevelopingmathematicalconcepts and

skills.

 How to incorporate it into a curriculum

The lessons based on the approach

can be found throughout the

curriculum in order to develop

mathematical concepts, skills, and

procedures.

The discussion for comparing students’ different

solutions is important for students to acquire new

knowledge and understanding of mathematics.



Using lesson study to incorporate the idea of teaching through problem solving

Planning a lesson for lesson study is always challenging for teachers especially when
teachers want to incorporate a new pedagogical idea that they have not experienced
before. Lesson study is an ideal way to overcome such a challenging situation,
because teachers can work together toward the same goal, which is to understand the
new approach and to seek ways to incorporate it into each teacher’s classroom
(Takahashi & Yoshida, 2004).

Although there are many different ways to plan a lesson for lesson study, it is often
useful to examine each lesson carefully through the following three lenses;
curriculum, students, and resources.

 Curriculum
Any lessons that teachers prepare for their students must be purposeful and
meaningful. Although there are many good problems for problem solving,
it is important for teachers to identify what mathematics your students are
expected to acquire through the lesson. This will become the goal of the
lesson. In order to make the goal clear, teachers need to investigate the
curriculum on which the students' mathematics learning is based – what they
have already learned, what they are expected to learn now, and how their
learning now will lead to their future learning. If the lesson is not fit into the
curriculum well, it will not be helpful for students to accomplish the goal
of the lesson.

 Students
Knowing students is crucial when teachers plan a lesson. Especially for the
lessons that are designed for students to acquire mathematical thinking,
teachers need to know how the students might attempt to solve the problem.
Without anticipating their students' approaches to the problem, teachers may
not be able to plan how to lead the students to develop mathematical
thinking by using their informal approaches to solving the problem. It is also
important to anticipate students’ typical misunderstandings so that teachers
can be ready to support the students in overcoming their misunderstandings.

 Resources
Choosing the best resources is also an important part of planning lessons.
These resources include not only good problems in textbooks and other
resource materials but also manipulatives, video, and interactive tools on the
internet. Moreover, simply knowing what resources are available is not



enough. Teachers should know the potential benefits and drawbacks of each

resource. For example, there are problems that are interesting and fun but
that may not lead students to develop mathematical thinking at a particular
time. When examing the lesson through this lens, teachers might want ask
themselves if this is the best resource for students to reach the goal.

In Japanese, the above process of investigating the curriculum, students, and resources is
called Kyozai Kenkyu. This investigation is important groundwork for planning lessons.
The quality of each lesson will greatly rely upon the deepness of Kyozai Kenkyu. Kyozai
Kenkyu becomes extremely important when teachers plan lessons to address new teaching
agenda such as developing mathematical thinking through problem solving.



1 http://www.cyberglass.biz/customflash/ghostwhisperer/

Planning a lesson for students to develop Mathematical Thinking through
Problem Solving
When begin to plan a problem-solving lesson, there are multiple entry points. For
example teachers might want to begin Kyozai Kenkyu by carefully examining the
curriculum to identify what mathematics the students are expected to acquire.
Another entry point is to begin with examining students’ work to identify what might be
the area where students need to deepen their understanding in order to improve their
mathematical ability. The third entry point is by examining resources to plan a
problem-solving lesson. Although planning lessons in all three ways is encouraged for
teachers, it is important to closely look at the lesson planning process by using the third
entry point, resources, because many novice teachers take a wrong pass after they
chose an attractive problem.

When teachers read teacher resource books and textbooks, and participate in
professional development workshops and conferences, they often find an interesting and
fun problem for students. Although these problems are useful resources, it is important
to note that they are raw material and need to be prepared for a problem-solving
lesson. It is not a good idea for teachers to bring those raw materials to classrooms to
simply ask students to solve them or to show students how to solve problems. When
teachers do not have a clear goal of the lesson, the lesson often become meaningless for
the students.

At the APEC Tokyo/Sapporo symposia, Stacey (2006) used an interesting website,
“Crystal Ball1”, to illustrate the processes of mathematical thinking in the context of a
problem solving lesson. If teachers are inspired by her talk and want to use the
website to plan a problem-solving lesson for their own students to develop
mathematical thinking, what should they do?

Investigating the problem

As Stacey (2006) describes, there are several ways to find out the trick. It is
important for teachers to attempt several different approaches to discover
mathematics behind the “Crystal Ball”. In this particular case, teachers want to spend time
to find the trick by themselves. Then, they should look at the same web page from
students’ viewpoints, asking themselves how could they find out the trick if they
were a fifth grade student or a seventh grade student? This will lead teachers to investigate
the problem through the student lens, although the investigation originally began through
resource lens. After trying to figure out find out the trick in various ways, it might be a
good idea to compare all the approaches for figuring out the trick to see how these
approaches are related and how they are different. What mathematical knowledge
and skills, and mathematical thinking are required for each approach?

Through this investigation, a group of teachers might be able to come up the
following conclusion.



In order to find out the trick, one of the approaches is to try several specific examples
to find a pattern among the examples. Students typically use this inductive approach
and find out that there might be mechanism behind the trick, but it is difficult to
figure out why the pattern exists. Another approach is to investigate the process of
calculations described in the “Crystal Ball” instruction in order to find out what
calculations are actually carried out to get the symbol that you need to imagine. This
deductive approach demands that students write, interpret, and use mathematical
expressions to investigate the trick, then find out why the crystal ball gives you the
same symbol no matter what two digit numbers are chosen. During this
investigation, students will be using their previous learning of the properties of the
basic operations, the notion of place value, and the use of symbols in mathematical
expressions to see the generalized pattern.

Investigating the problem through other lenses

The next step toward planning a lesson by using the “Crystal Ball” might be to
narrow down what mathematics teachers expect students to acquire through this problem
solving. From previous investigation, teachers agree that most students should be
able to try at least a couple of specific cases to draw a conclusion that there might be a
trick behind the website. Moreover, some of the students might be able to find that the
procedure that the “Crystal Ball” gives always produces a number that is a multiple of
nine. It is, however, expected that many students might not be able to figure out why the
procedure always gives a number that is multiple of nine, because it requires students to
manipulate mathematical expressions.

The above process describes how teachers can investigate the problem through the lens
of "students". The next step might be the investigation through the "curriculum" lens.
In the Curriculum focal points for pre -kindergarten through grade 8 mathematics: a
quest for coherence (National Council of Teachers of Mathematics, 2006), one of the
focal points in the middle school is to write, interpret, and use mathematical
expressions and equations to solve problems. It is expected that students become able to

1) write mathematical expressions and equations that correspond to given
situations,

2) evaluate expressions, and

3) use expressions and formulas to solve problems.

One of the challenges for the students is to write mathematical expressions that
correspond to a given situation. Sometimes students may be reluctant to write
mathematical expressions because they often try to find the answer by simply
carrying out calculations and cannot see the merits of writing mathematical
expressions. In order to overcome students’ reluctance to write mathematical
expressions, therefore, it is important that they learn how writing mathematical
expressions that can help them to solve problems.

Form that discussion, the goal of this problem-solving lesson might be to provide
students an opportunity to learn inductive reasoning by writing, interpreting, and
using mathematical expressions.



1 http://www.cyberglass.biz/customflash/ghostwhisperer/

Designing the flow of the lesson

After going through the ground work, Kyozai Kenkyu, the group of teachers should
move toward actually discussing how to pose the problem, and what questions a
teacher can ask the students toward acquiring mathematical knowledge and skills. There
are several types of lesson plans for lesson study. One important component that most
Japanese lesson plans share is the section called "anticipated students’ responses." The
quality of the section of student anticipated responses relies heavily on the richness of
Kyozai Kenkyu. Moreover, this section usually contributes greatly to the quality of the
discussion that a teacher will be leading after students present their various solutions.

It is often a good idea for teachers to prepare answers for the following questions to
develop a short sketch of the lesson.

 Purpose of the problem solving (goal of the lesson)

What mathematics, beside developing problem solving skills, would you teach by
using this situation?

 Questioning

How would you pose the problem?
What question(s) would you ask of your students for them to learn
mathematics?

 Beyond show and tell

Anticipate students’ responses to your questions, including misunderstandings, to
facilitate discussion.
Briefly describe how you would facilitate discussion.

The Appendix shows an example of the lesson plan for the problem-solving lesson using
the “Crystal Ball."

Conclusion

Planning lessons for lesson study demands that teachers spend time and effort. Although
it is time consuming, once teachers experience this process with their colleagues, they
start seeing their everyday lessons differently. It is not easy for teachers to change their
teaching practice in a short time. However, it will be a great step toward addressing
mathematical thinking in their everyday lessons.

It will be also a powerful experience for teachers to observe an actual classroom based
on the lesson plan that the group planned together. Since the mathematical thinking can
be observed mostly in the process of students’ problem solving and dialogues among
students, the entire process of lesson study is expected to improve mathematical
thinking.
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8TH GRADE MATHEMATICS LESSON PLAN
April 26, 2007

Las Cruces, NM
Instructor: Akihiko Takahashi

1. Title of the lesson: The Secret of The Crystal Ball
2. Goal of the lesson:

1. To deepen students’ understanding of the properties of the basic operations and
place value by writing, interpreting, and using mathematical expressions
through problem solving

2. To help students become good problem solvers by
i. encouraging them to use their prior knowledge to examine a problem

situation in order to develop their ability to use logical reasoning to make
conjectures, and

ii. encouraging them to examine and justify the conjectures presented by their
peers in order to find a solution to the problem.

3. Provide opportunities for students to recognize the importance of working with
their peers in order to deepen their understanding of mathematics

3. Instruction of the Lessons

In the Curriculum focal points for pre-kindergarten through grade 8 mathematics: a quest
for coherence (National Council of Teachers of Mathematics Inc. Reston VA., 2006),
one of the
focal points in the middle school is to write, interpret, and use mathematical expressions
and equations to solve problems. It is expected that students become able to:

1) write mathematical expressions and equations that correspond to given situations,
2) evaluate expressions, and
3) use expressions and formulas to solve problems.

One of the challenges for the students is to write mathematical expressions that correspond to
a given situation. Sometimes students may be reluctant to write mathematical expressions
because they often try to find the answer by simply carrying out calculations and cannot see
the merits of writing mathematical expressions. In order to overcome students’
reluctance to write mathematical expressions, therefore, it is important that they learn how
writing mathematical expressions can help them to solve problems.

When designing such problem-solving lesson, it is important to keep in mind that
solving a problem is a process for providing an opportunity for students to appreciate that
writing, interpreting, and using mathematical expressions. Therefore, the flow of the lesson
should not solely focus on finding the correct answer, but also the process of solving the
problem.

This Lesson Plan is prepared for the Lesson Study Workshop at Las Cruces, NM. April 26, 2007
By Akihiko Takahashi



This lesson is designed for students’ to understand how writing, interpreting, and
using mathematical expressions help them analyze the
problem situation and empower them to solve a problem.

The problem for this lesson to figure out the
mechanism behind a trick named “Crystal Ball” from the
website of a popular TV program, Ghost Whisperer
(http://www.cbs.com/primetime/ghost _whisperer/crystal b
all.shtml). The website is based on a popular math trick and
use Flash, multimedia authoring program for web
applications, to make it interactive and engaging. The
procedures that described on the website is

Chose any two digit number, add together both digits and then subtract the total
from your original number. When you have the final number look it up on the
chart and find the relevant symbol. Concentrate on the symbol and when you
have it clearly in your mind click on the Ghost Whisperer crystal ball and it will
show you the symbol you are thinking of

In order to find out the trick, one of the approaches is to try several specific examples to
find a pattern among the examples. Students typically use this inductive approach and
find out that there might be mechanism behind the trick but it is difficult to figure out why
the pattern exists. Another approach is to investigate the process of calculations described
in the “Crystal Ball” instruction in order to find out what calculations are actually carried
out to get the symbol that you need to imagine. This deductive approach demands that
students write, interpret, and use mathematical expressions to investigate the trick, then
find out why the crystal ball always gives you the same symbol no matter what two digit
numbers are chosen. During this investigation, students will be using their previous
learning of the properties of the basic operations, the notion of place value, and the use
of symbols in mathematical expressions to see the generalized pattern.



4) Flow of the Lesson
Learning Activities,

Teacher’s Questions and Expected Students’ Reactions
Teacher’s Support Points of

Evaluation
1. Introduction to the Problem
By experiencing the “Crystal Ball” on the internet,
students will become familiar with the site.

Ask a couple of
volunteer students to

Do students
understand the

1. Chose any two digit number,
2. Add together both digits,
3. Subtract the total from your original number

try the website so that
all the students
understand the

procedure?

Do students

4. When you have the final number look it up on procedures described see what is
the chart and find the relevant symbol. on the webpage. happening on

5. Concentrate on the symbol and when you have Help students to see the website?
it clearly in your mind the website always

6. Click on the crystal ball to see the symbol gives you the relevant
symbol.

2. Posing the problem
By asking the following question, engage students to Do students
find the trick behind the “Crystal Ball” webpage. Each student will be see there must
With which opinion do you agree? working with his/her be a trick

a. It is just a coincident and there is nothing partner to find a trick behind the
special in the “Crystal Ball” webpage. by using their prior “Crystal Ball”

b. There might be a trick behind the “Crystal knowledge. webpage

Ball”.
c. The “Crystal Ball” webpage actually reads your Provide students with

mind. worksheets to keep
Let’s find the trick behind the “Crystal Ball” webpage! their work for the

whole class
discussion.
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3. Problem Solving
Working with a partner, students try to find the trick
behind the “Crystal Ball” webpage. Encourage students to
Anticipated students’ responses: try at least a couple of

a. Try a couple of specific examples to notice that specific examples. Do students
the relevant symbol might be always the same try at least a
but do not know why these symbols are the Help students couple of
same. understand that specific

b. By examining several specific examples, he/she methods (a) and (b) examples to
realizes that the final number will always be a may not be able to notice that the
multiple of nine, and the symbols on the chart answer the question relevant
that correspond to multiple of nine are all the why all the final symbol from
same. However, he/she does not know why the numbers give you the your
final number will always be a multiple of nine. same symbol. calculation

c. Write, interpret, and use mathematical might always
expressions to investigate the trick Encourage students to be the same.

 a b as a chosen two digit number investigate the
 The value of a b is 10a + b process of
 Write a mathematical expression to calculations described

express the procedure in the instructions to
(10a + b)(a + b) “Crystal Ball” in
= 1 0 a + b a b order to find out what
= 1 0 a a + b b calculations are
= 9a actually carried out to
Therefore the final number will always get the symbol that
be a multiple of nine you need to imagine.

4. Discussing Students’ Solutions Write students’ Can students
(1) Ask students to explain their solutions to the other solutions and ideas on explain their

students in the class. the blackboard in solutions to
(2) Facilitate students’ discussion about their solutions,

then lead them to understand that writing,
interpreting, and using mathematical expressions

order to help students
understand the
discussion.

their peers?
Can students
examine and

helped them understand the trick behind the justify the
“Crystal Ball” webpage. solutions

presented by
their peers?

5. Summing up Encourage students to
(1) Using the writing on the blackboard, review what use the writing on the

students learned through the lesson. board as a reference
(2) Ask students to write a journal entry about what when they write the

they learned through this lesson. journal entry.
Reference
National Council of Teachers of Mathematics Inc. Reston VA. (2006). Curriculum Focal Points

for Prekindergarten through Grade 8 Mathematics: A Quest for Coherence.



http://www.cbs.com/primetime/ghost whisperer/crystal ball .shtml
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SETTING LESSON STUDY WITHIN A LONG-TERM
FRAMEWORK OF LEARNING

David Tall
University of Warwick, UK

Lesson Study is a format to build and analyse classroom teaching where teachers and
researchers combine to design lessons, predict how the lessons might be expected to
develop, then carry out the lessons with a group of observers bringing multiple
perspectives on what actually happened during the lesson. This article considers how a
lesson, or group of lessons, observed as part of a lesson study may be placed in a
long-term framework of learning, focusing on the essential objective of improving the
long-term learning of every individual in classroom teaching.

INTRODUCTION

This paper began as a result of a participation in a lesson study conference (Tokyo &
Sapporo, December 2006) in which four lessons were studied as part of an APEC
(Asian and Pacific Economic Community) study to share ideas in teaching and
learning mathematics to improve the learning of mathematics throughout the
communities. It included the observation of four classes (here given in order of grade,
rather than order of presentation):

Placing Plates (Grade 2)
December 2nd 2006, University of Tsukuba Elementary School

- Takao Seiyama

Multiplication Algorithm (Grade 3)
December 5th 2006, Sapporo City Maruyama Elementary School
- Hideyuki Muramoto

Area of a Circle (Grade 5)
December 2nd 2006, Universty of Tsukuba Elementary School
- Yasuhiro Hosomizu

Thinking Systematically (Grade 6)
December 6th 2006, Sapporo City Hokuto Elementary School
- Atsutomo Morii

The objective of this paper is to set these classes within a long -term framework of
development outlined in Tokyo at the conference (Tall, 2006), which sets the growth
of individual children within a broader framework of mathematical development.
Long-term the development of individual children depends not only on the
experiences of the lesson, but in the experiences of the children prior to the lesson
and how experiences ‘met-before’ have been integrated into their current knowledge
framework.

In general, it is clear that lesson study makes a genuine attempt:



to design a sequence of lessons according to well-considered objectives;
to predict what may happen in a lesson;

to have a group of observers bring multiple perspectives to what happened,
without prejudice; and ultimately

to improve the teaching of mathematics for all.

Lesson study is based on a wide range of communal sharing of objectives. At the
meeting I was impressed by one essential fact voiced by Patsy Wang -Iverson:

The top eight countries in the most recent TIMMS studies shared a
single charactistic, that they had a smaller number of topics studied each year.

Success comes from focusing on the most generative ideas, not from covering detail
again and again. This suggests to me that we need to seek the generative ideas that are
at the root of more powerful learning.

For many individuals, mathematics is complicated and it gets more complicated as
new ideas are encountered. For a few others, who seem to grasp the essence of the ideas,
the complexity of mathematics is fitted together in a way that makes it essentially
simple way. My head of department at Warwick University in the sixties, Sir
Christopher Zeeman noted perceptively:

“Technical skill is a mastery of complexity, while creativity is a mastery of
simplicity” (Zeeman, 1977)

This leads to the fundamental question:

How can we help each and every child find this simplicity, in a way that works,
for them?

Lesson study focuses on the whole class activity. Yet within any class each child
brings differing levels of knowledge into that class, related not only to what they have
experienced before, but how they have made connections between the ideas and how
they have found their own level of simplicity in being able to think about what they
know.

To see simplicity in the complication of detail requires the making of connections
between ideas and focusing on essentials in such a way that these simple essentials
become generating principles for the whole structure.

In my APEC presentation in Tokyo (Tall 2006), I sought this simplicity in the way that
we humans naturally develop mathematical ideas supported by the shared experiences
of previous generations. I presented a framework with three distinct worlds of
mathematical development, two of which dominate development in school and the third
evolves to be the formal framework of mathematical research. The two encountered in
school are based on (conceptual) embodiment and (proceptual) symbolism. I described
these technical terms in more detail in Tall (2006) and in a range of other recent
papers on my website (www.davidtall.com/papers).



Essentially, conceptual embodiment is based on human perception and reflection. It
is a way of interacting with the physical world and perceiving the properties of
objects and, through thought experiments, to see the essence of these properties and
begin to verbalise them and organize them into coherent structures such as Euclidean
geometry. Proceptual symbolism arises first from our actions on objects (such as
counting, combining, taking away etc) that are symbolized as concepts (such as
number) and developed into symbolic structures of calculation and symbolic
manipulation through various stages of arithmetic, algebra, symbolic calculus, and so
on. Here symbols such as 4+3, x2 + 2x +1, ! sin x dx all dually represent processes

to be carried out (addition, evaluation, integration, etc) and the related concepts that
are constructed (sum, expression, integral, etc). Such symbols also may be
represented in different ways, for instance 4+3 is the same as 3+4 or even ‘1 less than
4+4’ which is ‘1 less than 8’ which is 7. This flexible use of symbols to represent
different processes for giving the same underlying concept is called a procept.

These two worlds of (conceptual) embodiment and (proceptual) symbolism
develop in parallel throughout school mathematics and provide a long-term framework
for the development of mathematical ideas throughout school and on to university,
where the

Figure 1. The three mental worlds of (conceptual) embodiment,
(proceptual) symbolism and (axiomatic) formalism



focus changes to the formal world of set-theoretic definition and formal proof.

In figure 1 we see an outline of the huge complication of school mathematics. On the left
is the development of conceptual embodiment from practical mathematics of physical
shapes to the platonic methods of Euclidean geometry. In parallel, there is a development
of symbolic mathematics through arithmetic, algebra, and so on, with the two
blending as embodiment is symbolized or symbolism is embodied.

The long-term development begins with the child’s perceptions and actions on the
physical world. In figure 1 the child is playing with a collection of objects: a circle, a
triangle, a square, and a rectangle. The child has two distinct options, one to focus on his
or her perception of each object, seeing and feeling their separate properties, the other is
through action on the objects, say by counting them: one, two, three, four.

The focus on perception, with vision assisted by touch and other senses to play with the
objects to discover their properties, leads to a growing sense of space and shape,
developing through the use of physical tools—ruler, compass, drawing pins, thread—
to enable the child to explore geometric ideas in two and three dimensions, and on to the
mental construction of a perfect platonic world of Euclidean geometry. The focus on
the essential qualities of points having location but no size, straight lines having no
width but arbitrary extensions and on to figures made up using these qualities leads
the human mind to construct mental entities with these essential properties. Platonism is
a natural long-term construction of the enquiring human mind.

Meanwhile, the focus on action, through counting, leads eventually to the concept of
number and the properties of arithmetic that benefit from blending embodiment and
symbolism, for example, ‘seeing’ that 2 x 3= 3 ! 2 by visualizing 2 rows of 3 objects
being the same as 3 columns of 2 objects. Long-term there is a development of
successive number systems, fractions, rationals, decimals, infinite decimals, real
numbers, complex numbers. (What seems to the experienced mathematician as a
steady extension of number systems is, for the growing child, a succession of changes of
meaning which need to be addressed in teaching. We return to this later.)

The symbolic world develops through whole number arithmetic, fractions, decimals,
algebra, functions, symbolic calculus, and so on, which are given an embodied
meaning through the number-line, Cartesian coordinates, graphs, visual calculus,
with aspects of the embodied world such as trigonometry being realized in symbolic
form. In the latter stages of secondary schooling, the learner will meet more
sophisticated concepts, such as symbolic matrix algebra and the introduction of the
limit concept, again represented in both embodied and symbolic form.

The fundamental change to the formal mathematics of Hilbert leads to an axiomatic
formalism based on set-theoretic definitions and formal proof, including axiomatic
geometry, axiomatic algebra, analysis, topology, etc.

Cognitive development works in different ways in embodiment, symbolism and
formalism (Figure 2). In the embodied world, the child is relating and operating with



perceived objects (both specific and generic), verbalizing properties and shifting from
practical mathematics to the platonic mathematics of axioms, definitions and proofs.

In the symbolic world, development begins with actions that are symbolized and
coordinated for calculation and manipulation in successively more sophisticated
contexts. The shift to the axiomatic formal world is signified by the switch from
concepts that arise from perceptions of, and actions on, objects in the physical world
to the verbalizing of axiomatic properties to define formal structures whose further
properties are deduced through mathematical proof.

Focusing on the framework appropriate to school mathematics, we find the main
structure consists of two parallel tracks, in embodiment and symbolism, each
building on previous experience (met-befores), with

embodiment developing through perception, description, construction,
definition, deduction and Euclidean proof after the broad style suggested by
van Hiele;

symbolism developing through increasingly sophisticated compression of
procedures into procepts as thinkable contexts operating in successively
broader contexts.

Figure 2: long-term developments in the three worlds



These two developments are fundamentally different. On the one hand, embodiment
gives a global overall picture of a situation while symbolism begins with coordinating
actions, practicing sequences of actions one after another to build up a procedure,
perhaps refining this to give different procedures that are more efficient or more
effective, using symbolism to record the actions as thinkable concepts. The problem
here is that the many different procedures can, for some, seem highly complicated
and so the teacher faces the problem of reducing the complexity, perhaps by
concentrating on a single procedure to show the pupils what to do, without becoming
too involved in the apparent complications. Procedures, however, occur in time and
become routinized so that the learner can perform them, but is less able to think about
them. (Figure 3.)

As an example, consider the teaching of long-multiplication. First children need to
learn their tables for single digit multiplication from 0 ! 0 to 9 ! 9. They also need to
have insight into place value and decimal notation.

The method used by Hideyuki Muramoto in the lesson study at Sapporo City
Maruyama Elementary School on December 6, 2006 can be analysed in terms of an
initial embodiment representing 3 rows of 23. Here the learner can see the full set of
counters: the problem is how to calculate the total. The embodiment can be broken
down in various ways, separating each row into subsets appropriate to be able to
compute the total. In the previous lesson the students had already considered 3 rows
of 20 and had broken this into various sub-combinations, breaking each row into
10+10 or 5+5+5+5, or even 9+9+2, or 9+2+9. Now the problem related to breaking

Figure 3: Developmental framework through embodiment and symbolism



23 into sub-combinations, suggested possibilities included 10+10+3 and 9+5+9 (but
not 5+5+5+5). Three lots of 10+10+3 gives 30+30+9, which easily gives 60+9,
which is 69. Three lots of 9+5+9 is more difficult requiring the sum 27+15+27. Here we
have two different procedures giving the same result, 69, and the most productive way
forward is to break the number 23 into tens and units and multiplying each separately
by 3.

In this analysis, the embodiment gives the meaning of the calculation of a single digit
times a double digit number, while the various distinct sub-combinations give
different ways of calculation, from which the sub-combination as tens and units is
clearly the simplest and the most efficient.

The approach has a general format:

1. Embody the problem (here the product 23 ! 3);

2. Find several different ways of calculation (here 23 ! 3 is three lots of
10+10+3 or three lots of 9+9+5) where the embodiment gives meaning to
symbolism;

3. See flexibility, that all of these are the same;

4. See the standard algorithm is the most efficient.

Thus embodiment gives meaning while symbolism enables compression to an
efficient symbolic algorithm.

It may be that not all the children in the class will be able to cope with the different
procedures (for instance, one would expect the suggestion 9+5+9 to come from a
more able child and the computation would not be easy for some). Thus, the dynamic
of the whole class may not be shared by all individuals. The more successful may see the
different ways of computing the result as different procedures with the same

Figure 4: multi-digit arithmetic from embodiment to symbolism



effect, and meaningfully see that the standard algorithm is just one of many that is
chosen because it is efficient and simple. They may sense that it is not appropriate to
use a more complicated method like 3 times 9+9+5 and not even desire to carry it
through without this compromising their insight that different procedure s can give the
same result. Meanwhile, those who are less fluent in their tables may feel insecure
and seek an easy method to cope that is less complicated. A single procedure may
have its attractions, showing how to do it, without the complication of why it works. It may
have attractions to the teacher to teach the method by rote as this may have
short-term success without extra complication.
In this way, the same lesson may be seen very differently by different participants, at one
extreme, a great insight into the meaning and construction of the standard algorithm
within a rich conceptual framework, at another extreme, a great deal of complication
and a desire to cope by seeking a procedure that works rather than a situation which is
too complicated to understand. This bifurcation is what Gray & Tall (1994) called
the proceptual divide between those who seek to maintain procedures that work at the
time rather than flexible methods that require many meaningful connections in a
broader knowledge structure.
BLENDING KNOWLEDGE STRUCTURES IN THE BRAIN

In addition to this combination of embodiment and symbolism to give meaning to
number concepts and operations, there are subtle features of successive number
systems that cause additional problems. A mathematician may see successive
numbers systems such as:

Whole Numbers

Fractions

Rational Numbers

Positive and Negative numbers

Real Numbers consisting of rationals and irrationals

as a growing extension of the number system. They can all be marked on an
(embodied) number line and the child should be able to see how each one is extended
to the next. However, for the learner, each extension has subtle aspects which can
cause significant problems. We all know of the difficulty of introducing the concept of
fraction and of the problem of multiplying negative numbers. There are subtle
difficulties between counting and measuring:

Counting 1, 2, 3, ... has successive numbers, each with a next number and
no numbers in between. Multiplying these numbers gives a bigger result ... etc.

Measuring numbers are continuous without a ‘next’ number and have
fractions between. Multiplying can give a smaller result.

Elsewhere (e.g. Tall, 2007), I use the idea of conceptual blending from Fauconnier &
Turner (2003) to shed light onto the cognitive strengths and difficulties of long -term



learning in mathematics. Fauconnier and Turner share the distinction of being the
first cognitive scientists to integrate the fundamental ideas of compression and
blending of knowledge into a single framework. In considering how students learn
long-term, this suggests we need to be aware not only what experiences students have
had before, but how they compress this experience into thinkable concepts and how
different knowledge structures are blended together to produce new knowledge.

USINGALONG-TERMFRAMEWORKOFEMBODIMENTAND
SYMBOLISM IN LESSON STUDY

Putting together the ideas of growth in elementary mathematics discussed here and in the
earlier paper (Tall, 2006), we find that the parallel development of embodiment and
symbolism suggests:

Embodiment gives human meaning as prototypes, developing verbal
description, definition, deduction.

Symbolism is based initially on human action, leading to symbol use, either
through procedural learning or through conceptual compression to flexible
procept.

Experiences build met-befores in the individual mind that are used later to
interpret new situations.

Different experiences may be blended together, requiring a study of what
learners bring to a new learning experience.

Tall (2006) also observed:

Embodiments may work well in one context but become increasingly
complex; flexible symbolism may extend more easily.

This means that successful students may show a long-term tendency to shift to
symbolism to work in a way that is both more powerful and (for them) more simple.

In our earlier discussions in Tokyo, great emphasis was made not only on meaningful
learning of mathematical concepts and techniques, but also on problem-solving in
new contexts. Learning new concepts can be approached in a problem-solving
manner. My own view is that learners must take responsibility for their own learning,
once they have the maturity to do so, which includes developing their own methods for
solving problems. I also believe that teachers have a duty, as mentors, to help focus
students on methods that are powerful and have long-term value.

In studying lessons, therefore, we need some objectives to consider. There are so
many theories in the literature, from Bruner’s (1966) analysis into enactive iconic and
symbolic, Fischbein’s (1987) categorization into intuitive, algorithmic and formal, the
Pirie-Kieren theory (1994) with its ideas of ‘making’ and ‘having’ images and
successive levels of operation, Dreyfus and colleagues RBC theory (Recognising,
Building-With, Consolidating), theories of problem-solving (Schoenfeld 1985,
Mason et al. 1982) and so on. With such a wealth of ideas to choose from and build on
(and build with), I will hear focus on three simple ideas that are important. You may
choose different ones, but in the long run, it is important for those studying



lessons to have principles with which they are working and a fundamental framework for
each lesson study. I suggest the need in long-term development to focus on three
aspects:

Building thinkable concepts in (meaningful) knowledge structures;

Using knowledge structures in routine and problem situations (where
‘routine’ includes practising for fluency);

Proving knowledge structures (as required in context).

I would see these three aspects being applied before, during and after each lesson.

BEFORE: What is the purpose of the lesson

(e.g. Building new constructs, Using known routines or problem-solving,
Proving in some sense) and what concepts may the learners have in mind that
may be used in the lesson? (met-befores, blends, routines, problem-solving
techniques)

DURING: How do learners use their knowledge structures during the
lesson to make sense of it? (met-befores, blends, routines, problem-solving
techniques)

AFTER: What knowledge structures are developing that may be of value in
the future? (met-befores, blends, routines, problem-solving techniques)

LESSONS STUDIES

Four classes were videoed during our previous meeting in Japan, December, 2006.

Placing Plates (Grade 2)
December 2nd 2006, Universty of Tsukuba Elementary School
- Takao Seiyama;

Multiplication Algorithm (Grade 3)
December 5th 2006, Sapporo City Maruyama Elementary School

- Hideyuki Muramoto;

Area of a Circle (Grade 5)
December 2nd 2006, University of Tsukuba Elementary School
- Yasuhiro Hosomizu;

Thinking Systematically (Grade 6)
December 6th 2006, Sapporo City Hokuto Elementary School
- Atsutomo Morii.

My purpose is to focus on the role of these lessons in long-term learning, and to
consider how the long-term development of each and every student may be affected
by the lesson within the framework suggested above.

There is already a great deal of evidence of the use of broad principles in the planning of
the lessons which are formulated in the lesson plans. Taking a few quotes at
random we find:



The goal of the Mathematics Group at Maruyama is to develop students
ability to use what they learned before to solve problems in the new learning
situations by making connections.

In addition, we want to provide 3rd grade students with experiences in
mathematics that enable them to use why they learned before to give
problems in new learning situations by making connections.
Through teaching mathematics, I would like my students to develop ‘secure
ability’ for finding problems on their own, studying by themselves, thinking,
making decisions, and executing those decisions. Moreover, I would like to
help my students like mathematics as well as enjoy thinking.
In order for students to find better ideas to solve the problem, it is important
for the students to have an opportunity to feel that they really want to do so.

Starting in April (beginning of the school year), I taught the students to
look at something from a particular point of view such as ‘faster, easier, and
accurate’ when they think about something or when they compare
something.

If you think about the method that uses the table form this point of view,
students might notice that “it is accurate but it takes a long time to figure
out: or “it is accurate but it is complicated.”

In order to solve a problem in a short time and with less complexity, it is
important for the students to notice that calculation using a math sentence in
necessary.

Each of these shows a genuine desire for students to make connections, to rely on
themselves for making decisions and to seek more powerful ways of thinking with
less complexity. The videos of the classes themselves show high interaction between the
students, and with the teacher, carefully orchestrated by the teacher to bring out
essential ideas in the lesson.

We now briefly look at each lesson in turn, to see how it fits with a long-term
development blending embodiment and symbolism, what aspects of Building, Using,
and Proving arise as an explicit focus of attention, before, during, and after the lesson.
In particular, we need to look deeper at how individual children respond to the lesson in
ways that may be appropriate for their long-term development of powerful mathematical
thinking.

In the pages which follow, I reproduce overheads from my presentation that look at
each of the lessons to see where it fits in the overall plan of building ideas from a
blend of embodiment and symbolism to build use and prove powerful mathematical
concepts. This is, in no way, intended to be a once-and-for-all analysis. It is offered
as a preliminary analysis for those developing lesson study to initiate discussion on
how to implement the techniques of lesson study within a long-term framework that
focuses on improving the learning of mathematics for each and every student.













In Britain, attention is turning to the needs of ‘pupils at risk’ who need extra support and
to the ‘gifted and talented’ who need extra challenges.

É for pupils at risk of falling behind, early intervention and special support to
help them catch up. This is already underway with the ‘Every Child a
Reader’ programme for literacy, which is now being matched with the ‘Every
Child Counts’ initiative for numeracy, alongside one-to-one tuition for up to
another 600,000 children.Gordon Brown, The Guardian, May 15, 2007

However, it is not a linear race, with some ‘falling behind’ and others ‘racing ahead’. It
is also a question of different kinds of learning and different ways of coping.

Assuming our major purpose is to improve the long-term learning of mathematics for
each and every one of our children, I suggest that there is a need for lesson study to
be placed in a long-term framework to design and monitor the long-term
development of individuals, to gain insight not only what needs to be learnt and how,
but also why some develop flexible, powerful mathematical thinking and others have
serious difficulty.

The framework offered is based on the different styles of cognitive growth in
embodiment and symbolism over the long -term, and the way in which different
individuals build on mental structures based on ideas met-before.
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