Asia-Pacific Economic Cooperation

Eco-Efficiency in Small and Medium Enterprises
– Leather Products Industry

APEC Small and Medium Enterprises Working Group

1998
This Manual has been prepared as a guide for the introduction of eco-efficiency practices in the LEATHER PRODUCTS INDUSTRY. It is specifically aimed at small to medium sized enterprises, and provides practical guidance for identifying and evaluating opportunities for eco-efficiency in the workplace.

This manual will help you to identify opportunities for reducing costs and improving environmental performance at your company. This can be achieved through reductions in raw materials and the costs of waste management; creation of marketable by-products, new markets and increased market shares; energy savings, reduced pollution and consent charges, reduced fees and penalties; and worker health and safety.

The Manual is one of a series covering a range of industrial sectors, and has been developed following research conducted under the funding and direction of the Asia Pacific Economic Co-operation (APEC). Other sectors covered in the series include:

- the chemicals and plastics industry;
- the textile industry;
- the steel and metal products industry;
- the paper and printing industry;
- the food and beverage industry;
- the vehicle parts and assembly industry; and
- the machinery and electrical equipment industry.

THIS MANUAL CONTAINS THE FOLLOWING SECTIONS:

1. ECO-EFFICIENCY - MAKING BUSINESS MORE PROFITABLE P.1
 Explains the background to the eco-efficiency concept and the benefits to small and medium enterprises.

2. ASSESSING OPTIONS FOR ECO-EFFICIENCY IN THE WORKPLACE P.4
 Describes how to identify and evaluate opportunities for eco-efficiency and waste minimization.

3. DEVELOPING PRACTICAL SOLUTIONS P.12
 Illustrates management and process changes in the leather products industry which have been adopted around the world.

4. MONITORING YOUR PROGRESS P.17
Outlines the importance of measuring the benefits and maintaining the drive for improvement.
1 ECO-EFFICIENCY - MAKING BUSINESS MORE PROFITABLE

1.1 Overview and Cost Savings

What is Eco-Efficiency?
The concept of eco-efficiency parallels that of industrial efficiency - or good business sense. By reducing waste (here we refer to all types of waste, including time, energy, money and resources), industrial activities can move toward efficient and profitable operation. As a management practice, therefore, eco-efficiency aims to do more with less.

Eco-efficiency measures need not incur large financial investment into new technologies or processes, but can often be brought about simply through better housekeeping. In this context eco-efficiency includes any initiative or measure undertaken by an industry which results both in reduced environmental impact and increased efficiency and resulting cost savings for the company concerned. Typical examples of eco-measures are waste minimization, clean technology, and the reduced use of energy or materials per unit output. An eco-measure may also be management, process, technology, or production orientated, but will generally not include "end-of-pipe" treatment.

Cost savings may be immediate financial returns that appear directly on the balance sheet, such as material, energy and water savings. However additional savings may well arise in the future, perhaps from the reduced ‘clean-up’ required for contaminated land. The following shows some examples of eco-efficiency initiatives in the leather products industry in Chile, Mexico, and the United States and their associated savings.

<table>
<thead>
<tr>
<th>Eco-Option</th>
<th>Financial Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Chile, during the tanning process, chromium was recycled by precipitation, reducing both employee exposure discharge to the environment chromium.</td>
<td>The cost was $2000 pesos and the financial benefit was $1000 pesos per year (two year payback period).</td>
</tr>
<tr>
<td>In Mexico, leather cuttings were recycled and rinse waters re-used.</td>
<td>Material use was cut by 42%.</td>
</tr>
<tr>
<td>In the US, significant declines in water consumption were achieved by reusing the effluent from the</td>
<td>The total investment was US$1000 and the net savings per annum were US$1000.</td>
</tr>
</tbody>
</table>
Eco-Option

<table>
<thead>
<tr>
<th>Financial Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>liming wash.</td>
</tr>
<tr>
<td>In Chile, liming wash water effluent was reused during the pre-tanning process.</td>
</tr>
<tr>
<td>In the US, the waste stream was segregated in a tanning facility, avoiding generation of foul smelling and toxic hydrogen sulfide gas.</td>
</tr>
<tr>
<td>In the US, measures were adopted to recover and reuse chromium, reducing employee exposure and discharge to the environment.</td>
</tr>
</tbody>
</table>

1.2 Why Should You Be Concerned With Eco-Efficiency

Are You Operating Within the Law? As economies continue to expand and develop, the regulations adopted by governments to protect the environment will become more stringent and better enforced. Businesses have in the past addressed tougher regulations by using more and more ‘end of pipe’ technologies to reduce pollution. However these technologies are costly and often need upgrading to keep pace with new regulations.

An alternative approach, adopted by more forward thinking companies, is to change their existing practices to eliminate or reduce the wastes they produce. This adoption of eco-efficiency minimizes the for end-of pipe technologies and hence directly reduces costs.

Are You Missing Key Opportunities? A good eco-efficiency program will identify and exploit the market opportunities associated with good environmental practice. Many firms have discovered new business opportunities as a result of their efforts to solve pollution problems (for example the sale of waste by-products as a raw material to other businesses) and the promotion of ‘green’ products. These opportunities, if properly pursued, can not only offset the costs of the program, but can lead to increased profits.

Moreover, effective eco-efficiency programs can identify other opportunities for reducing production costs, meeting customer and
supplier requirements, improving worker health and safety, enhancing
the company’s public image and preventing potential future liability
problems.

The International Standards Organization (ISO) 14000 series of
standards is the main vehicle
defining and supporting the application of environmental
management systems (EMS). ISO 14001, the standard appropriate to
most manufacturers, requires that an organization identify the
“environmental aspects of its activities, products or services that it can control
and over which it can be expected to have an influence, in order to determine
those which have or can have significant impacts on the environment.”

ISO 14001 includes routine internal monitoring of environmental
performance against defined targets for improvement. It is then
important to note that the successful implementation of the ISO 14001
standards in many ways parallels or supports particular eco-efficiency
objectives, for example to reduce raw material usage and waste
production.

ISO 14001 is already required for many industrial operations in
Western Europe and in North America. In addition, and with regard to
international trade, overseas markets are increasingly making ISO
14001 a requirement of their suppliers, and interest is continuing to
increase throughout Asia.
This section describes how to go about identifying and evaluating potential opportunities for improving eco-efficiency in your workplace. This process is in principle the same for all types of industry, and consists of four basic steps:

- Step 1 - preparing for the assessment;
- Step 2 - identifying opportunities for eco-efficiency;
- Step 3 - measuring the baseline; and
- Step 4 - evaluating the options.

The key elements of each of these steps are summarized in the following illustration.
Like all important business decisions, eco-efficiency requires the full commitment and support of top management for its successful implementation. Before anything else, the management must first develop its strategy for the eco-efficiency assessment. The key factors to be defined by the strategy are the objectives (what management hopes to achieve), the timescale for the assessment, and the resources which will be required (both human and financial). Once these factors have been defined, they can be put forward as an Action Plan, which allocates responsibilities to each of the team members.

A key element of the Action Plan is to define the focus of the assessment, which must be made clear during this preparation stage. For example, the assessment may focus on the whole facility, or perhaps on the operations of just one unit. On the other hand, the assessment may just look at key issues of concern, such as:

- raw material losses;
- wastes that cause processing problems;
- wastes considered to be hazardous or for which regulations exist;
- wastes which are or will be costly to treat and dispose of; or
- high energy consumption.

In whichever case, it is important to use simple flow diagrams of the operations and processes which are being investigated to keep track of the assessment. As a first step, the following information should be collected and reviewed:

Eco-Efficiency Assessment Data

- the quantities and costs of raw materials, water and energy;
- the processes that consume high water volumes;
- the processes that generate high wastewater volumes;
- the sources and quantities of each type of waste;
- waste management costs (storage, collection and disposal);
- discharge points of wastewater; and
The size of the assessment team will of course depend upon the scale and complexity of the processes to be investigated. A more complicated process may require at least 3 or 4 individuals including technical, production and accounts staff. Informing employees of the aims of the assessment will also help the process, encouraging their cooperation and increasing their employee awareness.

The assessment should be undertaken during normal working hours so that machine operators can be consulted, actual operations can be observed, and wastes quantified.

2.2 Step 2 - Identifying Opportunities

The following checklist gives a general approach to identifying options for improved eco-efficiency in facilities of all types. Invest a little time in walking around your facility and ask yourself the following questions.

<table>
<thead>
<tr>
<th>Resource Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Are batch sizes maximized and batches sequenced to minimize unnecessary cleaning and equipment warm-up or cool-down?</td>
</tr>
<tr>
<td>2. Could high-pressure water cleaning replace chemical cleaning?</td>
</tr>
<tr>
<td>3. Can process chemicals or additives be replaced by less damaging substances or mechanical processes?</td>
</tr>
<tr>
<td>4. Can alternative processes produce the same results with fewer resources and less waste?</td>
</tr>
<tr>
<td>5. Would overflow alarms for any tanks and vessels produce cost savings?</td>
</tr>
<tr>
<td>6. Do your processes have adequate and accurate monitoring and gauging techniques? Are raw materials or additives used in excess?</td>
</tr>
<tr>
<td>7. Are you aware of any incidents of production line personnel using more of a particular chemical 'just in case'.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Waste Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Are you aware of all wastes and can you characterize them in terms of composition and quantity?</td>
</tr>
<tr>
<td>2. Are waste materials properly segregated and separately stored for appropriate disposal and possible re-use?</td>
</tr>
<tr>
<td>3. Is hazardous waste mixed with non-hazardous waste? If so, are non-hazardous wastes treated by costly hazardous waste techniques?</td>
</tr>
</tbody>
</table>
4. Is packaging and product filler kept to a minimum? Are products combined or condensed to reduce packaging?
5. Are all drums and containers thoroughly emptied before cleaning or disposal?

Material Purchasing and Storage

1. Do you know the shelf life and ordering system for raw materials? Does this affect loss through ageing?
2. Do your suppliers accept the return of outdated supplies? Do they keep their packaging to a minimum?
3. Can materials in store be inspected visually to identify corrosion or leaks?
4. Can materials be contaminated by others in the store? Are containers damaged by forklift trucks, etc?

Re-use and of Recycling

1. Is there any potential for mutually beneficial activities with neighboring industries? Could you utilize their by-products as a material resource, or sell your by-products to others?
2. Could your waste be used as a source of energy, by yourself or others?
3. Could packaging received from your suppliers be returned and re-used?
4. Could the packaging you give to your customers be returned and re-used?

Water Conservation

1. Would high pressure nozzles on hoses save water in cleaning equipment and workspaces?
2. Could taps and faucets be fitted with automatic shut-offs or flow restricters?
3. Is fresh water discharged after a single use? Is there potential to recirculate used water (for example from cooling) for re-use for other purposes such as cleaning?

Energy Conservation

1. Are you familiar with your overall energy profile and quarterly energy consumption levels and costs?
2. Are staff aware of energy issues, eg turning off equipment and lighting if not in use?
3. Are boilers, lights and refrigeration units old and efficient? How long would energy efficient plant take to pay for itself in savings?
2.3 Step 3 - Measuring the Baseline

Before eco-efficiency opportunities can be assessed, the current ‘baseline’ position needs to be quantified. Establishing the baseline situation will allow the benefits of eco-efficiency options (for example to reduce waste) to be quantified, both in terms of environmental improvement and cost savings.

A mass balance can be undertaken to varying degrees of precision and depth. In evaluating eco-efficiency opportunities for small and medium sized companies, it is prudent to limit the detail of the initial
studies of the processes under investigation. Further detail can be added when the most promising areas for savings have been identified. The secret to a good mass balance, however, lies in its systematic and methodological approach.

Measuring Inputs and Outputs

The quantification of the inputs to a process includes two approaches:

- analyze purchasing records for materials and utility bills for energy and water to determine overall quantities involved; and
- measure actual quantities entering the process by counting, weighing or metering.

The output side of the mass balance consists of the same two principles:

- analyze waste disposal records for liquid and solid wastes, effluents, and production records for end products and byproducts; and
- measure quantities leaving the process by counting, weighing or metering.

The most common area in which mistakes are made with a mass balance lies within the timescale over which the analysis is undertaken. Particular care is needed in choosing an appropriate time period, and this is dictated by whether a continuous or batch process is being considered. For continuous processes, the times of any starts and stops must be accurately recorded. For batch processes, several batches should be measured (perhaps over the period of a week) to give a representative analysis.

Balancing the Inputs and Outputs

In an ideal mass balance, the quantity of materials going into a process equals that which comes out. However, to reach such a level of detail is seldom feasible under limited timescales, apart from for very simple processes. Despite this, the mass balance approach still provides the basis for a better understanding of the production process. This in itself is the key to identifying areas of unnecessary wastage and where production processes and their management can improve with real cost benefits.

2.4 Step 4 - Evaluating the Options

If undertaken systematically, the first two steps of the assessment will
reveal a range of areas in which eco-efficiency can be improved, through both better management and process technology. In order to select the most appropriate option for your business, it is also important to take a systematic approach to their evaluation. Three factors need to be taken into account:

- the environmental performance of the option;
- the nature of the option and its implementation potential; and
- the cost of the option and its payback period.

Such an evaluation will of course include subjective considerations. The following technique however, can be used to apply a score to each factor.

<table>
<thead>
<tr>
<th>Environmental Performance</th>
<th>Assessing the environmental performance can be complicated, particularly where different types of environmental effects have to be compared. As a starting point, it may be most practical to consider reductions in waste and the use of toxic substances as below:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction at source (raw materials, toxins, and energy) - 5 points.</td>
<td>• Reduction at source (raw materials, toxins, and energy) - 5 points.</td>
</tr>
<tr>
<td>Resource recovery and in-process - 4 points.</td>
<td>• Resource recovery and in-process - 4 points.</td>
</tr>
<tr>
<td>End-of-pipe recycling - 3 points.</td>
<td>• End-of-pipe recycling - 3 points.</td>
</tr>
<tr>
<td>In-process treatment - 2 points.</td>
<td>• In-process treatment - 2 points.</td>
</tr>
<tr>
<td>End-of-pipe treatment - 1 point.</td>
<td>• End-of-pipe treatment - 1 point.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Implementation Potential</th>
<th>More than one eco-efficiency option may address the same problem (such as excess water use), however their implementation may involve different levels of complexity. For example, one measure may require substantial changes to existing plant and therefore result in unacceptable delays, where the other (perhaps more costly) option may provide an instant solution. Implementation potential can also be assessed using a scoring system:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly likely - 4 points.</td>
<td>• Highly likely - 4 points.</td>
</tr>
<tr>
<td>Medium probability - 3 points.</td>
<td>• Medium probability - 3 points.</td>
</tr>
<tr>
<td>Low probability - 2 points.</td>
<td>• Low probability - 2 points.</td>
</tr>
<tr>
<td>Highly unlikely but still worth considering - 1 point.</td>
<td>• Highly unlikely but still worth considering - 1 point.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost of the option and payback</th>
<th>Certain eco-efficiency options are high in capital cost and may seem unattractive. However, the savings which arise from the option must also be taken into account when assessing its cost.</th>
</tr>
</thead>
</table>
Calculating the simple payback period is one useful tool for assessing the cost benefit. The simple payback period shows how soon the option will pay for itself in savings (perhaps two weeks or four years), and is calculated by dividing the total capital investment (equipment and installation costs) by the expected operating cost savings per year (from reduced material, energy, water, labor and waste disposal costs). In the scoring system below, options with a high capital cost but rapid payback should therefore be considered as a low cost option:

- No or Minimal Cost - 4 points.
- Low Cost - 3 points.
- Medium Cost - 2 points.
- High Cost - 1 point.

Comparing the Options

Once scores have been attributed to the environmental performance, implementation potential and costs of each option, they can be more directly compared, as shown below. Those options awarded the highest scores are more likely to be successful.

<table>
<thead>
<tr>
<th>Modification</th>
<th>Environmental Performance</th>
<th>Implementation Potential</th>
<th>Cost of Option</th>
<th>Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option A</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>Option B</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>
• Obtain the commitment and support of top management, to establish a strategy and clear objectives.
• Formulate an Action Plan which identifies the focus of the assessment and allocate responsibility.
• Collect documentation, flow diagrams of processes, and relevant data.
• Establish the baseline using a mass balance to measure inputs and outputs.
• Identify opportunities for eco-efficiency through improved management and process technology.
• Evaluate options for using a systematic assessment of environmental performance, implementation potential, and option cost.
3 DEVELOPING PRACTICAL SOLUTIONS

The methodology in the previous section shows how opportunities for eco-efficiency measures can be identified, quantified, and compared to each other for appraisal.

This section describes some of the areas where eco-efficiency measures have been adopted in the leather industry in the past. Basic guidelines are given for the three key areas in which these opportunities are commonly found:

- housekeeping and management;
- modifications to products and processes; and
- waste management.

3.1 HOW GOOD IS YOUR HOUSEKEEPING?

Housekeeping is a general term which is used to describe how well the day-to-day activities of a facility are managed. Housekeeping measures are not necessarily technical in nature; they include basic functions such as storage, stock control, record keeping, cleaning and maintenance.

Good housekeeping is essential for making sure that a business is run efficiently. In the same way, good housekeeping is also the first and most essential step to improving eco-efficiency. Housekeeping is therefore the first place a manager should look for opportunities to save resources, reduce waste and prevent pollution. Good housekeeping provides low-cost, low-risk and low-technology solutions for improving eco-efficiency and saving money. Areas where efficiency can be improved through improved housekeeping include:

- water conservation;
- operation and maintenance of equipment;
- purchasing and storage; and
- measuring and calibration.

Much of the chemicals used in the leather industry are applied in solution (one reason why the industry is such a large consumer of water). Reducing water use, therefore, also reduces chemical use and treatment requirements. Water consumption can be cut significantly by improved housekeeping, in particular by:
• eliminating the overflow of vessels and pipes which run constantly;
• adopting batch processing, which can cut water use by 50% and can also improve product uniformity; and
• avoiding the excessive wash-downs of floors and drums.

The periodic checking of components (pumps, valves, filters, switches and regulators) will avoid inaccurate dispensing, leaks, filter clogging by hair, and off-quality production. Close attention should be paid to common defects such as missing guards, loose electrical cords, and leaks of water, steam and compressed air.

Badly managed purchasing and storage can lead to over-stocking and poor storage, with material lost through ageing, spillage and contamination. Proper chemical handling begins with procedures for ordering, purchasing, and storing:

• obtain details about proper packaging, handling, chemical constitution, and control of impurities from the suppliers;
• use packaging designed to minimize spills (most bulk containers are effective);
• registering dates and quantities of all purchases on receipt to minimize surplus and spoilt orders;
• segregate chemicals (eg acidic, flammable, alkali, oxidiser) to prevent contamination;
• use proper racks, storage bins and bulk tanks with dikes or berms to contain leaks;
• store goods away from heavily trafficked areas; and
• use a vacuum to clean-up powder spills, which under no circumstances should be washed down the drain.

Inaccurate measurement and calibration results in material waste, especially where too much material is used just in case:

• Measuring and dispensing devices should be routinely calibrated. Individual measuring vessels should be retained for each chemical, avoiding unnecessary washing.
• All chemicals should be accurately weighed, dispensed and mixed, avoiding spillage and waste. Mixing areas should be well lit and ventilated, with a smooth and sealed floor, and as close to the production area as possible.
• Wash small parts in a solvent bowl and filter and re-use the
Once the first step of improving housekeeping has been taken, the eco-efficiency assessment can move on to technology modifications and material substitutions. On the whole, such changes to the process require some capital investment, however savings in energy, water and material use can result in attractive payback periods, perhaps within a few months.

The easiest technologies to implement are often those proven in other industries. Such modifications are often made in the following areas:

- ‘unhairing’ and liming;
- chrome and vegetable tanning processes; and
- finishing.

In each case, the design stage (of a product, the process and particularly a new facility) offers the unique and optimum opportunity for making change.

Unhairing and liming

The unhairing process is produces a significant proportion of the pollution caused in leather processing, particularly through high organic and sulfide loads released in effluents. A range of recycling techniques exist which can minimize these emissions. A common approach, for example, is sulfide stripping, where liquors are collected in a caustic soda solution prior to reuse i.e. liming. Sulfide stripping requires the acidification of liquors prior to their collection as a hydrogen sulfide gas.

In addition to sulfide stripping, protein precipitation can often be adopted whereby upon removal, through for example catalytic oxidation and acidification, liquor can be recycled as a wash-out or deliming liquid.

Chrome tanning

The efficiency of many processes involving chrome tanning techniques can be significantly increased through commercially proven and accepted means. Measures include approaches for high chrome exhaustion, chrome recycling, and chrome recovery:

- High chrome exhaustion - raising chrome fixation (using self-
basifying chrome compounds and dicarboxylic acid, coupled with a combination of chrome fixation methods, including short float and increased temperature and time) can result in savings in chrome levels which can easily offset chemical costs.

- Chrome recycling can reduce chrome levels by up to 20% together with reducing effluent salinity levels. Chrome may be recycled from used liquors to the tanning process, and from liquors to the pickling process.

- Chrome recovery may be achieved through the treatment of chrome bearing liquors with alkali to precipitate the chromium as hydroxide. This is then recovered through sludge filtration or overnight settling. In either case, the residue is dissolved in sulphuric acid.

Vegetable tanning is not widely adopted within the leather industry. However, switching from counter current pit systems to closed process tanning can yield a significant reduction in the tanning concentration of effluents. This may involve the pre-conditioning of hides in high strength baths (including 5% polymeric polyphosphate and 2% sulphuric acid) for a day prior to processing. The hides are then immersed in a series of pits with a pH of 3.5 and a temperature of 35°C. The process takes approximately one week to complete.

Leather finishing involves the use of many solvents, pigments, dyes, and binders. The efficiency of the application methods (often by brush, pad or spraying) is a common area in which improvements can be made, resulting in substantial savings in chemical wastage. In addition alternative substances, such as aqueous dyes like acrylic and polyurethane, are becoming increasingly available, which emit less harmful vapors and produce less damaging wastewater which requires less treatment and is easier to re-use.

Non-solvent fixing processes, for example the infrared fixing of resins, also reduces the problems associated with vapors containing volatile organic compounds (VOCs).
A cornerstone of good waste management is the segregation (the capture, separation and storage) of different waste streams to allow material recovery, recycling and re-use. Examples in the leather industry is the automatic reclamation of lint in the spinning process, and the recovery of water by filter-based water recovery systems.

In some cases, the leather industry has benefited from the establishment of formal and informal networks through which the wastes of one company can become the raw material of another. Benefits include reduced waste disposal costs, savings in material and supply costs and revenue generation through marketing reusable materials.

The first step in introducing a waste exchange program is to conduct a facility wide inventory of all potentially reusable products and supplies.

Most economies have Clearing Houses for waste reduction that can supply you with information pertaining to recyclers who will supply and buy products, together with information and guidance on existing waste exchanges.

Solid wastes such as dust and trimmings have the potential to be marketed, or converted, into a number of by-products. The marketing potential will depend typically upon your ability to supply a consistent product. By-products might include, for example, gelatin and glue, and/or leatherboard from waste trimmings. In addition, in cases where wastes include organic sludge (which is free from chrome or sulfides), this may be used as a soil conditioner in farming. Other examples of the materials that can be exchanged are listed below.

Materials Commonly Exchanged in the Leather Industry

- Fibers - cloth scraps, rags, wool, cotton, yarn
- Solvents - chlorinated solvents, organic solvents, corrosive liquids, inks, paints
- Oils - cutting oil, fuel oil, motor oil, hydraulic oil
- Plastics - polypropylene, high-density polyethylene (HDPE), polymer scraps, polyvinyl chloride (PVC), polystyrene, rubber, urethane materials
- Metals - aluminum, brass, copper, iron, lead, steel, tin, metallic sludge
- General wastes - batteries, glass, pallets, cardboard, steel drums, tires, wood scraps, office paper, paper tubes
Once measures for eco-efficiency have been implemented, it is critical that progress is continually monitored. This is the key to identifying whether the initiatives are in fact producing the cost savings that were anticipated, and hence whether the objectives of the eco-efficiency program have been met.

In addition, monitoring is the only way to establish whether the performance targets which you have established are being achieved. This information provides the basis for setting targets in the future, and also helps identify where the implementation of subsequent eco-efficiency measures can be improved.

The following gives a simple checklist which can be used to assess the overall benefits of the eco-efficiency program. As mentioned above, this should be supported with more detailed records of material, water and energy consumption, and waste disposal charges.

THE ECO-EFFICIENCY EVALUATION CHECKLIST

Taking all costs into account, have unit costs of production fallen?

Are you still ordering the same quantity of raw materials?

Has there been a reduction in energy costs?

Has unit output remained static?

Have you received the same amount of violation notices?

Are you selling any new products?

Are you selling more of the same products?

Have waste handling and/or shipping costs remained static?

Have waste disposal charges decreased?

Are you discharging less effluent and air emissions?

Is there any reduction in the number or work-related accidents?

Has your program had any effect on the number of worker absentee days?

Is there a lower turn over of staff, perhaps through improved working environment, conditions, and moral?
Nearly all eco-efficiency programs depend upon the commitment of you and your staff for their success, continuation and advancement. You must therefore disseminate and publicize stories of success and acknowledge your efforts and their efforts in its contribution. You should also allow for the development and implementation of new ideas and techniques.

GOOD LUCK and avoid conclusions, such as "there are no cost saving or environmental opportunities at my facility".

This Best Practice Manual was prepared for APEC by Environmental Resources Management, Ltd.

The authors acknowledge all those offering guidance and materials in the development of this Manual, with particular thanks to staff at the United States Environmental Protection Agency, Cincinnati, Ohio, and to the UK Metal Finishers Association for their permission to adapt the ‘project scoring’ system in Section 2.