

Mike McLaughlin CSIRO Land and Water/University of Adelaide Adelaide, Australia

Risk Assessment Fundamentals

 The Risk Characterisation Ratio (RCR) is the ratio of the predicted (or measured) environmental concentration (PEC) divided by the predicted no effect concentration (PNEC)

RCR

PEC

PNEC

Risk Assessment Fundamentals

- The Predicted Environmental Concentration (PEC) can be a predicted concentration in soil given assumptions on addition rate (for new contamination), or a measured concentration (at historically contaminated sites)
- The Predicted No Effect Concentration (PNEC) is derived from ecotoxicity data, usually from the literature
- An acceptable Risk Characterisation Ratio is dependent on policy of the country in question – generally a value of 1.0 is regarded as the threshold

Issues for risk assessment of metals/metalloids in soil

- Background concentrations in soil
- Soil bioavailability effects
- Soil organism sensitivity
- Differences between toxicity in the laboratory and in the field

How should background concentrations be accounted for?

- Metals occur naturally in soils
- For example: Red soils -Ferrosols or Oxisols naturally contain 100–400 mg/kg Cr and 100–300 mg/kg Ni
- Ecosystems on these soils are adapted to these naturally occurring concentrations

5

Dealing with Ambient Background

 Dealing with ambient background concentrations is difficult

Dealing with Ambient Background

- We can separate the total concentration of metal/ metalloid in soil into 2 portions
 - 1. Ambient background (geogenic)
 - 2. Added by man (anthropogenic)
- We assume geogenic metals are not harmful to ecosystems as the organisms have adapted to these concentrations
- There are various methods to estimate 'background" levels

Issues for risk assessment of metals/metalloids in soil

- Background concentrations in soil
- Soil bioavailability effects
- Soil organism sensitivity
- Differences between toxicity in the laboratory and in the field

Soil bioavailability effects for added metals/metalloids

- Metals/metalloids added to soil will interact with clay minerals and organic matter in the soil (remember all soils have charged surfaces, mostly negative charge)
- Some added metals may also form precipitates in soil with common soil elements e.g. lead (Pb) precipitates with soil phosphate (PO₄)
- These reactions generally reduce metal/metalloid solubility and hence toxicity

Soil bioavailability effects for added metals/metalloids

- Toxicity therefore depends on this interaction with the soil surfaces
- Contamination levels protective in a alkaline clay soil would be toxic in an acidic sand

Accounting for soil bioavailability effects

Normalisation relationships are relationships between toxicity and soil physico-chemical properties (e.g. organic carbon, pH, cation exchange capacity (CEC))

Issues for risk assessment of metals/metalloids in soil

- Background concentrations in soil
- Soil bioavailability effects
- Soil organism sensitivity
- Differences between toxicity in the laboratory and in the field

Organism sensitivity to metals/metalloids

- Some organisms are sensitive to small increases in concentration of metals/metalloids in soil, others are tolerant
- We need to ensure we protect sensitive species, especially if these are involved in keystone soil processes e.g. soil nitrogen cycling
- Species sensitivity distributions (SSDs) are used to describe this variation in toxicity for each metal/metalloid and a sensitive trigger value chosen
- Soil concentrations used in the SSD are generally corrected for bioavailability so that only species sensitivity is assessed

Accounting for organism sensitivity

Each species is given equal weight – so one data point per species in SSDs

Critical Zn concentration in soil (mg/kg)

PNEC=Predicted No Effect Concentration PAF = Potentially Affected Fraction (assume = 5%, i.e. 95% protection)

- Data need to be screened for quality and relevance before constructing the SSD
- If insufficient toxicity data in the literature to develop a SSD, assessment factors are used

Issues for risk assessment of metals/metalloids in soil

- Background concentrations in soil
- Soil bioavailability effects
- Soil organism sensitivity
- Differences between toxicity in the laboratory and in the field

Laboratory Artifacts: Salt Effects (Leaching)

Zinc toxicity series Unleached

Leached

Laboratory Artifacts: Ageing

Leaching/Aging Factors

- Both salt (leaching) and time (aging) effects must be considered when using short-term toxicity data derived from spiking soil with soluble metal salts
- Leaching/Aging Factors have been developed for several metals from EU REACH research programs
- These Leaching/Aging Factors are used to convert laboratory toxicity thresholds to more field-relevant thresholds

Seems Complex?

 Simple Excel-based calculators have been developed to include all the above factors for datarich metals

EU - <u>http://www.arche-consulting.be/en/our-</u> tools/soil-pnec-calculator/

Australia - http://www.scew.gov.au/node/941

- These have quality screened ecotoxicity data, incorporate SSDs and soil normalisation relationships to develop Soil Quality Standards
- 2 case studies will be examined using one of these Excel tools

Case Study 1

- A waste material is proposed to be used in your country as a soil amendment and it contains 500 mg/kg zinc (Zn)
- At recommended rates of application the product is expected to increase Zn concentrations in agricultural soils by +80.0 mg Zn/kg in the next 200 years
- Background Zn concentrations in your soils are ~40 mg Zn/kg
- Will this pose an ecological risk to soil organisms or plants, and which soils are most susceptible?

Case Study 1

- Need to think about soils in your jurisdiction in terms of
 - a) background Zn concentrationsb) soil pH and organic matter content (or CEC)
- Assume a background Zn concentration of 40 mg Zn/kg in your jurisdiction
- Assume the 5th percentile of soil pH in your country is 5.0, clay content of 5% and organic matter is 1.0% C (i.e. a sensitive soil scenario with high bioavailability, therefore protective of most soils)

Use PNEC calculator

Case Study 2

- A large copper smelter has closed and the area downwind of the smelter has elevated soil Cu concentrations (above background), with total concentrations in soil varying from 110 to 230 mg/kg
- Background concentrations of Cu in the soils however are also high, varying from 100 to 180 mg/kg
- The soils have a high clay content (30-45%) and are neutral in pH (6.5-7.5) with an organic matter content of 4%

Case Study 2

- Total Cu concentrations up to 230 mg/kg
- Background concentrations of Cu in the soils are 100 (lower limit)
- The soils have a high clay content (~45%) and are neutral in pH (7.0)
- Assume an organic matter content of 4.0%

Use PNEC calculator

Remember Soil Quality Standards are <u>screening</u> values!

Adopting an overseas soil quality standard

There is no formal guidance on this

Do not shop around for the value that best suits a predetermined outcome

Adopting an overseas standard

Do not use the lowest, median, average or largest value – its still shopping around but hiding behind statistics

British Prime Minister Benjamin Disraeli ("There are three types of lies -- lies, damn lies, and statistics."

Adopting an overseas standard

Issues to consider:

- the aim of the overseas standard;
- the purpose of the legislation;
- the level of protection provided % of species and what types of effect;
- the organisms to be protected; and
- the method of calculation

References

- Broos, K., M.S.J. Warne, D.A. Heemsbergen, D.P. Stevens, M.B. Barnes, R.L. Correll, et al. 2007. Soil factors controlling the toxicity of Cu and Zn to microbial processes in Australian soils Environ. Toxicol. Chem. 26: 583-590.
- Carlon, C., editor. 2007. Derivation methods of soil screening values in Europe. A review and evaluation of national procedures towards harmonisation. European Commissions, Joint Research Centre, Ispra, Italy.
- Struijs, J., D. van de Meent, W.J.G.M. Peijnenburg, M.A.G.T. van de Hoop and T. Crommentuijn. 1997. Added risk approach to derive maximum permissible concentrations for heavy metals: how to take natural background levels into account. Ecotoxicol. Environ. Saf. 37: 112-118.
- Hamon, R.E., M.J. McLaughlin, R.J. Gilkes, A.W. Rate, B. Zarcinas, A. Robertson, et al. 2004. Geochemical indices allow estimation of heavy metal background concentrations in soils. Global Biogeochemical Cycles 18, GB1014: 1-6.
- McLaughlin, M.J., R.E. Hamon, R.G. McLaren, T.W. Speir and S.L. Rogers. 2000. Review: A bioavailabilitybased rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Aust. J. Soil Res. 38: 1037-1086.
- McLaughlin, M.J. 2001. Ageing of metals in soils changes bioavailability. International Council on Mining and Metals Fact Sheet on Environmental Risk Assessment No. 5. <u>http://www.icmm.com/page/1345/enviromental-fact-sheet-5-ageing-of-metals-in-soils-changesbioavailability</u>
- McLaughlin, M.J. 2002. Heavy metals. In: R. Lal, editor Encyclopedia of Soil Science. Marcel Dekker, New York.

References

- Rooney, C.P., F.-J. Zhao and S.P. McGrath. 2006. Soil factors controlling the expression of copper toxicity to plants in a wide range of European soils. Environ. Toxicol. Chem. 25: 726-732.
- Sauve, S., W. Hendershot and H.E. Allen. 2000. Solid-solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34: 1125-1131.
- Smolders, E., J. Buekers, I. Oliver and M.J. McLaughlin. 2004. Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils. Environ. Toxicol. Chem. 23: 2633-2640.
- Smolders, E., K. Oorts, P. Van Sprang, I. Schoeters, C.J. Janssen, S.P. McGrath, et al. 2009. Toxicity of trace metals in soil as affected by soil type and aging after contamination: Using calibrated bioavailability models to set ecological soil standards. Environ. Toxicol. Chem. 28: 1633-1642.
- Thakali, S., H.E. Allen, D.M. Di Toro, A.A. Ponizovsky, C.P. Rooney, F.-J. Zhao, et al. 2006. A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils. Environ Sci Technol 40: 7085-7093.
- Traina, S.J. and V. Laperche. 1999. Contaminant bioavailability in soils, sediments, and aquatic environments. Proceedings of the National Academy of Sciences 96: 3365-3371. doi:10.1073/pnas.96.7.3365.
- Zarcinas, B.A., P. Pongsakul, M.J. McLaughlin and G. Cozens. 2004. Heavy metals in soils and crops in southeast Asia. 2. Thailand. Environ. Geochem. Hlth 26: 359-371.
- Zhao, F.-J., C.P. Rooney, H. Zhang and S.P. McGrath. 2006. Comparison of soil solution speciation and diffusive gradients in thin-films measurement as an indicator of copper bioavailability to plants. Environ. Toxicol. Chem. 25: 733-742.
- Zhao, F.J., S.P. McGrath and G. Merrington. 2007. Estimates of ambient background concentrations of trace metals in soils for risk assessment. Environ. Pollut. 148: 221-229.