

Energy Efficiency Policy Workshop 2019 Overview of the suite of policy measures to improve vehicle fuel economy

NameElizabeth YeamanInstitutionRetyna Ltd, New ZealandDate18 March 2019, Hong Kong

Focus for this presentation

- Investing in public transport, encouraging active modes (walking, cycling) through infrastructure and urban form, landuse planning, and pricing signals are all vital for a low carbon future, which also addresses congestion
- This presentation focuses on the suite of policies that can encourage a shift to more fuel/energy efficient light-duty vehicles (LDV), including electric vehicles (EVs), to reduce CO₂ emissions

Transport hierarchy of people movement

Source: Portland EV Strategy 2017, https://www.portlandoregon.gov/bps/article/619275

The purpose of transport is to help people access goods and services, work and education, family and friends

 Policies which encourage fuel efficient and low/zero emission vehicles should complement other transport policy measures reducing overall CO₂

Big difference in fuel consumption within vehicle class

SUV - Large SUV - Medium SUV - Small Car - Very large Max Car - Large Min Car - Medium Car - Small Car - Light 0 2 4 6 8 10 12 14 16 18 Fuel Consumption L/100km

Minimum and maximum fuel consumption by class (excludes EVs)

Data source: Yeaman, Car fuel efficiency labelling review, APEC TPT-39, Christchurch, 2014

Justification for intervention in the market

- Unpriced externalities: GHG emissions, air quality emissions
- Imperfect information: vehicle buyers tend to underestimate or don't know fuel costs over the time they own the vehicle
- Split incentives: vehicle sellers tend to make bigger profits on larger, less fuel efficient vehicles, but do not pay ongoing fuel costs - the same model of vehicle gets larger over the years with each redesign, as bigger vehicles equal bigger profits

Technology changes have improved fuel efficiency

 Driven by policy, technology changes have resulted in significant fuel consumption improvements for internal combustion engine (ICE) vehicles

Honda Civic SB	Civic TypeR FN2	Civic Type R FKB
9.0 L/100 km	8.1 L/100 km	6.5 L/100 km
11 km/L	12.3 km/L	15.3 km/L
26 mpg	29 mpg	36 mpg

EVs are a step change in energy efficiency

CO₂ benefits of EVs with fossil fuel electricity generation

https://aperc.ieej.or.jp/file/2014/2/5/ PREE 201311 Brunei Darussalam.pdf

Suite of vehicle fuel efficiency / CO₂ policies

VEHICLE FUEL EFFICIENCY STANDARDS	 Introduce and regularly strengthen mandatory standards Establish and harmonize testing procedures for fuel efficiency measurement.
	 Fuel taxes and vehicle taxes to encourage the purchase of more fuel-efficient vehicles. Infrastructure support and incentive schemes for very fuel-efficient vehicles.
MARKET-BASED APPROACHES	 Voluntary programs such as U.S. SmartWay and other green freight programs
	 Vehicle fuel economy labels Improving vehicle operational efficiency through eco-driving and other measures.

Adapted from International Council on Clean Transportation (ICCT), 2018

VEHICLE FUEL / CO2 DATA

Vehicle fuel efficiency/CO₂ standards create market push - encourage manufacturers to supply lower CO₂ vehicles

Data underpins everything

Fiscal incentives create
 market pull - demand from
 buyers for efficient vehicles

- Vehicle fuel efficiency/CO₂ standards create market push - encourage manufacturers to supply lower CO₂ vehicles
- Data underpins everything

- Fiscal incentives create market pull - demand from buyers for efficient vehicles
- Support from information and market measures
- Vehicle fuel efficiency/CO₂ standards create market push - encourage manufacturers to supply lower CO₂ vehicles

Data underpins everything

Where vehicle fuel efficiency/CO₂ standards operate

Corporate average standards are the norm

Region	Target Year	Regulated metric	Unadjusted Fleet Target/Measure	Form of target curve	Test Cycle
Brazil	2017	Energy consumption	1.82 MJ/km	Weight-based corporate average	U.S. combined
Canada	2016 2025	GHG	217 gCO ₂ /mi ¹ N/A ²	Footprint-based corporate average	U.S. combined
China	2015 2020	Fuel consumption	6.9 L/100km 5 L/100km	Weight-class based corporate average	NEDC
EU	2015 2021	CO ₂	130 gCO ₂ /km 95 gCO ₂ /km	Weight-based corporate average	NEDC ⁴
India	2 <mark>01</mark> 7 2022	CO ₂	130 g/km 113 g/km	Weight-based corporate average	NEDC for low-powered vehicle
Japan	2015 2020	Fuel economy	16.8 km/L 20.3 km/L	Weight-class based corporate average	JC084
Mexico	2016	Fuel economy/ GHG	39.3 mpg or 140 g/km	Footprint-based corporate average	U.S. combined
Saudi Arabia	2020	Fuel economy	17 km/L	Footprint-based corporate average	U.S. combined
South Korea	2015 2020	Fuel economy/ GHG	17 km/L or 140 gCO ₂ /km 24 km/L or 97 gCO ₂ /km	Weight-based corporate average	U.S. combined
U.S.	2016 2025	Fuel economy/ GHG s/2017-global-update-LDV-GHG	36.2 mpg ³ and 225 gCO $_2$ /mi 55.2 mpg ³ and 147 gCO $_2$ /mi	Footprint-based corporate average	U.S. combined

Data source: : <u>https://www.theicct.org/publications/2017-global-update-LDV-GHG-FE-standards</u>

How corporate average standards work

- The average fuel/energy consumption or CO₂ emissions of all light duty passenger vehicles manufactured, sold or imported by one particular auto company must be within a certain level over a set period of time, or they face penalties
- This incentivises auto manufacturers/importers to develop, offer, promote and favourably price more efficient and lower CO₂ vehicles (including EVs)
- Different to a Minimum Energy Performance Standard (MEPS) as no individual vehicles are restricted
- Happens "behind the scenes" regarding consumers

Weight based vs footprint based targets

Basis for target			
Absolute			
Relative	Footprint based		
	Weight based		

- The heavier a vehicle is, the greater its fuel consumption
- Footprint is a measure of vehicle size defined as the area enclosed by the tyres of the vehicle (wheelbase x track width)
- Footprint based targets encourage light-weighting of vehicles
- Weight based targets recognize the utility of different types of vehicles, hybrid/EV battery weight and weight data available

https://www.globalfueleconomy.org/data-and-research/publications/gfei-working-paper-17

Mix of weight-based and footprint-based targets

Region	Target Year	Regulated metric	Unadjusted Fleet Target/Measure	Form of target curve	Test Cycle
Brazil	2017	Energy consumption	1.82 MJ/km	Weight-based corporate average	U.S. combined
Canada	2016 2025	GHG	217 gCO ₂ /mi ¹ N/A ²	Footprint-based corporate average	U.S. combined
China	2015 2020	Fuel consumption	6.9 L/100km 5 L/100km	Weight-class based corporate average	NEDC
EU	2015 2021	CO ₂	130 gCO ₂ /km 95 gCO ₂ /km	Weight-based corporate average	NEDC ⁴
India	2 <mark>01</mark> 7 2022	CO ₂	130 g/km 113 g/km	Weight-based corporate average	NEDC for low-powered vehicle
Japan	2015 2020	Fuel economy	16.8 km/L 20.3 km/L	Weight-class based corporate average	JC08 ⁴
Mexico	2016	Fuel economy/ GHG	39.3 mpg or 140 g/km	Footprint-based corporate average	U.S. combined
Saudi Arabia	2020	Fuel economy	17 km/L	Footprint-based corporate average	U.S. combined
South Korea	2015 2020	Fuel economy/ GHG	17 km/L or 140 gCO ₂ /km 24 km/L or 97 gCO ₂ /km	Weight-based corporate average	U.S. combined
U.S.	2016 2025	Fuel economy/ GHG	36.2 mpg ³ and 225 gCO $_2$ /mi 55.2 mpg ³ and 147 gCO $_2$ /mi	Footprint-based corporate average	U.S. combined

Data source: <u>https://www.theicct.org/publications/2017-global-update-LDV-GHG-FE-standards</u>

CO₂ emissions from LDV: historical and current standards

Data source: https://www.theicct.org/publications/2017-global-update-LDV-GHG-FE-standards

How this compares to an economy with no standards

Data source: https://www.theicct.org/publications/2017-global-update-LDV-GHG-FE-standards

CO₂ emissions reductions from standards

Data source: <u>https://www.theicct.org/publications/2017-global-update-LDV-GHG-FE-standards</u>

Global EV sales are growing exponentially

Cumulative global passenger EV sales, current and forecast

Source: Bloomberg NEF

Norwegian new car sales by fuel type, 2011-2018

Strongest policy signal: ICE vehicle ban

Economy	Ban commences	Ban announced
Costa Rica	2021	2018
Denmark	2030	2019
Ireland	2030	2018
India	2030	2017
Israel	2030	2018
Netherlands	2030	2017
Norway	2030	2017
Sweden	2030	2019
Scotland	2032	2017
China	2040	2017
France	2040	2017
UK (except Scotland)	2040	2017

Data source: https://en.wikipedia.org/wiki/Phase-out_of_fossil_fuel_vehicles#List_of_jurisdictions

Fiscal measures

Taxes/fees

Vehicle sales taxes increase with fuel use or CO₂

Vehicle registration and annual licensing fees

Fuel taxes and price on carbon

Driving restrictions; zero emission zones

A fiscally neutral combination of fees and rebates

> May be more politically acceptable

Incentives

Purchase price subsidies for low carbon vehicles

Exemptions from fees and tolls; free parking

Infrastructure incentives for EV charging

Priority access or parking for EVs

Example: Singapore car registration feebate system

Cars Registered From					
1 July	2015 to 31 December 2017				

Band	Carbon Dioxide Emission (CO ² g/km)	Rebate	Surcharge
A1	CO₂ <u><</u> 95	S\$30,000	
A2	95 < CO ₂ <u><</u> 105	S\$15,000	
A3	105 < CO ₂ <u><</u> 120	S\$10,000	
A4	120 < CO ₂ <u><</u> 135	S\$5,000	
В	135 < CO ₂ <u><</u> 185	S\$0	S\$O
C1	185 < CO ₂ <u><</u> 200		S\$5,000
C2	200 < CO ₂ <u><</u> 215		S\$10,000
C3	215 < CO ₂ <u><</u> 230		S\$15,000
C4	230 < CO2		S\$30,000

https://www.lta.gov.sg/content/ltaweb/en/roads-and-motoring/owning-a-vehicle/costs-of-owning-a-vehicle/tax-structure-for-cars.html

ICCT: Elements of a best practice feebate scheme

- A continuous, linear feebate rate line
- A pivot point making the system self-funding and sustainable
- A linear metric, such as CO₂ emissions or fuel consumption per unit of distance
- An attribute adjustment (if used) based on vehicle size, not weight

CO₂ Emissions

 $\underline{https://www.theicct.org/publications/best-practices-feebate-program-design-and-implementation}$

Information measures

Vehicle fuel efficiency labels (VFEL)

Websites, promotional materials

http://publications.apec.org/Publications/2015/12/A-Review-and-Evaluation-of-Vehicle-Fuel-Efficiency-Labeling-and-Consumer-Information-Programs

Regulatory

framework

 Voluntary sign-up programmes which provide facilitation support and recognition to fleets buying efficient and low CO₂ vehicles and supporting efficient driver training

Summary – vehicle fuel economy standards

- Approved and accepted vehicle fuel/energy consumption data is a vital enabler
- Corporate average vehicle fuel efficiency/CO₂ standards encourage manufacturers to make, sell and promote lower CO₂ vehicles
- Fiscal measures including feebates encourage consumers to buy lower CO₂ vehicles, creating demand
- Information and other measures can provide important support but are insufficient on their own

How standards contribute to meeting IPCC targets

This analysis includes a 20% reduction in new car fuel consumption (Lge/100km) in the 6DS; an additional 30% reduction is reflected in the 2DS scenario, reaching the GFEI target.

GENERAL FUEL ECONOMY INITIATIVE

https://www.globalfueleconomy.org/media/460944/cop23-update-report.pdf

Thank you

